Using a Calibrated Detailed Building Energy Simulation Model to Compare the Potential of Energy Efficiency and Renewable Energy in the Kuwaiti Residential Sector

158765-Thumbnail Image.png
Description
Due to extreme summer temperatures that regularly reach 122°F (50°C), cooling energy requirements have been responsible for 70% of peak demand and 45% of total electricity consumption in Kuwait. It is estimated that 50%-60% of electric power is consumed by

Due to extreme summer temperatures that regularly reach 122°F (50°C), cooling energy requirements have been responsible for 70% of peak demand and 45% of total electricity consumption in Kuwait. It is estimated that 50%-60% of electric power is consumed by the residential sector, mostly in detached villas. This study analyzes the potential impact of energy efficiency measures (EEM) and renewable energy (RE) measures on the electric energy requirements of an existing villa built in 2004. Using architectural plans, interview data, and the eQUEST building energy simulation tool, a building energy model (BEM) was developed for a villa calibrated with hourly energy use data for the year 2014. Although the modeled villa consumed less energy than an average Kuwaiti villa of the same size, 26% energy reductions were still possible under compliance with 2018 building codes. Compliance with 2010 and 2014 building codes, however, would have increased energy use by 19% and 3% respectively. Furthermore, survey data of 150 villas was used to generate statistics on rooftop solar area availability. Accordingly, it was found that 78% of the survey sample’s average total rooftop area was not suitable for rooftop solar systems due to shading and other obstacles. The integration of a solar canopy circumvents this issue and also functions as a shading device for outdoor activities and as a protective cover for AC units and water tanks. Combining the highest modeled EEMs and RE measures on the villa, the energy use intensity (EUI) would be reduced to 15 kWh/m2/year from a baseline value of 127 kWh/m2/year, close to net zero. Finally, it was determined that EEMs were able to reduce the entire demand profile whereas RE measures were most effective at reducing demand around mid-day hours. In future studies, more effort should be spent on collecting hourly data from multiple villas to assist in the development of a detailed hourly bottom-up residential energy modeling methodology.
Date Created
2020
Agent