Improving proctoring by using non-verbal cues during remotely administrated exams

153980-Thumbnail Image.png
Description
This study investigated the ability to relate a test taker’s non-verbal cues during online assessments to probable cheating incidents. Specifically, this study focused on the role of time delay, head pose and affective state for detection of cheating incidences in

This study investigated the ability to relate a test taker’s non-verbal cues during online assessments to probable cheating incidents. Specifically, this study focused on the role of time delay, head pose and affective state for detection of cheating incidences in a lab-based online testing session. The analysis of a test taker’s non-verbal cues indicated that time delay, the variation of a student’s head pose relative to the computer screen and confusion had significantly statistical relation to cheating behaviors. Additionally, time delay, head pose relative to the computer screen, confusion, and the interaction term of confusion and time delay were predictors in a support vector machine of cheating prediction with an average accuracy of 70.7%. The current algorithm could automatically flag suspicious student behavior for proctors in large scale online courses during remotely administered exams.
Date Created
2015
Agent

Lighting prediction and simulation in large nighttime urban scenes

150447-Thumbnail Image.png
Description
Night vision goggles (NVGs) are widely used by helicopter pilots for flight missions at night, but the equipment can present visually confusing images especially in urban areas. A simulation tool with realistic nighttime urban images would help pilots practice and

Night vision goggles (NVGs) are widely used by helicopter pilots for flight missions at night, but the equipment can present visually confusing images especially in urban areas. A simulation tool with realistic nighttime urban images would help pilots practice and train for flight with NVGs. However, there is a lack of tools for visualizing urban areas at night. This is mainly due to difficulties in gathering the light system data, placing the light systems at suitable locations, and rendering millions of lights with complex light intensity distributions (LID). Unlike daytime images, a city can have millions of light sources at night, including street lights, illuminated signs, and light shed from building interiors through windows. In this paper, a Procedural Lighting tool (PL), which predicts the positions and properties of street lights, is presented. The PL tool is used to accomplish three aims: (1) to generate vector data layers for geographic information systems (GIS) with statistically estimated information on lighting designs for streets, as well as the locations, orientations, and models for millions of streetlights; (2) to generate geo-referenced raster data to suitable for use as light maps that cover a large scale urban area so that the effect of millions of street light can be accurately rendered at real time, and (3) to extend existing 3D models by generating detailed light-maps that can be used as UV-mapped textures to render the model. An interactive graphical user interface (GUI) for configuring and previewing lights from a Light System Database (LDB) is also presented. The GUI includes physically accurate information about LID and also the lights' spectral power distributions (SPDs) so that a light-map can be generated for use with any sensor if the sensors luminosity function is known. Finally, for areas where more detail is required, a tool has been developed for editing and visualizing light effects over a 3D building from many light sources including area lights and windows. The above components are integrated in the PL tool to produce a night time urban view for not only a large-scale area but also a detail of a city building.
Date Created
2011
Agent