Diffusion-weighted MR imaging: behaviors of phenomenological models and enhanced PROPELLER data acquisition

151270-Thumbnail Image.png
Description
The aim of this study was to investigate the microstructural sensitivity of the statistical distribution and diffusion kurtosis (DKI) models of non-monoexponential signal attenuation in the brain using diffusion-weighted MRI (DWI). We first developed a simulation of 2-D water diffusion

The aim of this study was to investigate the microstructural sensitivity of the statistical distribution and diffusion kurtosis (DKI) models of non-monoexponential signal attenuation in the brain using diffusion-weighted MRI (DWI). We first developed a simulation of 2-D water diffusion inside simulated tissue consisting of semi-permeable cells and a variable cell size. We simulated a DWI acquisition using a pulsed gradient spin echo (PGSE) pulse sequence, and fitted the models to the simulated DWI signals using b-values up to 2500 s/mm2. For comparison, we calculated the apparent diffusion coefficient (ADC) of the monoexponential model (b-value = 1000 s/mm2). In separate experiments, we varied the cell size (5-10-15 μ), cell volume fraction (0.50-0.65-0.80), and membrane permeability (0.001-0.01-0.1 mm/s) to study how the fitted parameters tracked simulated microstructural changes. The ADC was sensitive to all the simulated microstructural changes except the decrease in membrane permeability. The σstat of the statistical distribution model increased exclusively with a decrease in cell volume fraction. The Kapp of the DKI model increased exclusively with decreased cell size and decreased with increasing membrane permeability. These results suggest that the non-monoexponential models have different, specific microstructural sensitivity, and a combination of the models may give insights into the microstructural underpinning of tissue pathology. Faster PROPELLER DWI acquisitions, such as Turboprop and X-prop, remain subject to phase errors inherent to a gradient echo readout, which ultimately limits the applied turbo factor and thus scan time reductions. This study introduces a new phase correction to Turboprop, called Turboprop+. This technique employs calibration blades, which generate 2-D phase error maps and are rotated in accordance with the data blades, to correct phase errors arising from off-resonance and system imperfections. The results demonstrate that with a small increase in scan time for collecting calibration blades, Turboprop+ had a superior immunity to the off-resonance related artifacts when compared to standard Turboprop and recently proposed X-prop with the high turbo factor (turbo factor = 7). Thus, low specific absorption rate (SAR) and short scan time can be achieved in Turboprop+ using a high turbo factor, while off-resonance related artifacts are minimized.
Date Created
2012
Agent

Rapid 3D phase contrast magnetic resonance angiography through high-moment velocity encoding and 3D parallel imaging

150069-Thumbnail Image.png
Description
Phase contrast magnetic resonance angiography (PCMRA) is a non-invasive imaging modality that is capable of producing quantitative vascular flow velocity information. The encoding of velocity information can significantly increase the imaging acquisition and reconstruction durations associated with this technique. The

Phase contrast magnetic resonance angiography (PCMRA) is a non-invasive imaging modality that is capable of producing quantitative vascular flow velocity information. The encoding of velocity information can significantly increase the imaging acquisition and reconstruction durations associated with this technique. The purpose of this work is to provide mechanisms for reducing the scan time of a 3D phase contrast exam, so that hemodynamic velocity data may be acquired robustly and with a high sensitivity. The methods developed in this work focus on the reduction of scan duration and reconstruction computation of a neurovascular PCMRA exam. The reductions in scan duration are made through a combination of advances in imaging and velocity encoding methods. The imaging improvements are explored using rapid 3D imaging techniques such as spiral projection imaging (SPI), Fermat looped orthogonally encoded trajectories (FLORET), stack of spirals and stack of cones trajectories. Scan durations are also shortened through the use and development of a novel parallel imaging technique called Pretty Easy Parallel Imaging (PEPI). Improvements in the computational efficiency of PEPI and in general MRI reconstruction are made in the area of sample density estimation and correction of 3D trajectories. A new method of velocity encoding is demonstrated to provide more efficient signal to noise ratio (SNR) gains than current state of the art methods. The proposed velocity encoding achieves improved SNR through the use of high gradient moments and by resolving phase aliasing through the use measurement geometry and non-linear constraints.
Date Created
2011
Agent