Multi-objective Resource Constrained Parallel Machine Scheduling Model with Setups, Machine Eligibility Restrictions, Release and Due Dates with User Interaction

158723-Thumbnail Image.png
Description
This dissertation explores the use of deterministic scheduling theory for the design and development of practical manufacturing scheduling strategies as alternatives to current scheduling methods, particularly those used to minimize completion times and increase system capacity utilization. The efficient scheduling

This dissertation explores the use of deterministic scheduling theory for the design and development of practical manufacturing scheduling strategies as alternatives to current scheduling methods, particularly those used to minimize completion times and increase system capacity utilization. The efficient scheduling of production systems can make the difference between a thriving and a failing enterprise, especially when expanding capacity is limited by the lead time or the high cost of acquiring additional manufacturing resources. A multi-objective optimization (MOO) resource constrained parallel machine scheduling model with setups, machine eligibility restrictions, release and due dates with user interaction is developed for the scheduling of complex manufacturing systems encountered in the semiconductor and plastic injection molding industries, among others. Two mathematical formulations using the time-indexed Integer Programming (IP) model and the Diversity Maximization Approach (DMA) were developed to solve resource constrained problems found in the semiconductor industry. A heuristic was developed to find fast feasible solutions to prime the IP models. The resulting models are applied in two different ways: constructing schedules for tactical decision making and constructing Pareto efficient schedules with user interaction for strategic decision making aiming to provide insight to decision makers on multiple competing objectives.
Optimal solutions were found by the time-indexed IP model for 45 out of 45 scenarios in less than one hour for all the problem instance combinations where setups were not considered. Optimal solutions were found for 18 out of 45 scenarios in less than one hour for several combinations of problem instances with 10 and 25 jobs for the hybrid (IP and heuristic) model considering setups. Regarding the DMA MOO scheduling model, the complete efficient frontier (9 points) was found for a small size problem instance in 8 minutes, and a partial efficient frontier (29 points) was found for a medium sized problem instance in 183 hrs.
Date Created
2020
Agent

Development of horizontal coordination mechanisms for planning agricultural production

Description
Agricultural supply chains are complex systems which pose significant challenges beyond those of traditional supply chains. These challenges include: long lead times, stochastic yields, short shelf lives and a highly distributed supply base. This complexity makes coordination critical to prevent

Agricultural supply chains are complex systems which pose significant challenges beyond those of traditional supply chains. These challenges include: long lead times, stochastic yields, short shelf lives and a highly distributed supply base. This complexity makes coordination critical to prevent food waste and other inefficiencies. Yet, supply chains of fresh produce suffer from high levels of food waste; moreover, their high fragmentation places a great economic burden on small and medium sized farms.

This research develops planning tools tailored to the production/consolidation level in the supply chain, taking the perspective of an agricultural cooperative—a business model which presents unique coordination challenges. These institutions are prone to internal conflict brought about by strategic behavior, internal competition and the distributed nature of production information, which members keep private.

A mechanism is designed to coordinate agricultural production in a distributed manner with asymmetrically distributed information. Coordination is achieved by varying the prices of goods in an auction like format and allowing participants to choose their supply quantities; the auction terminates when production commitments match desired supply.

In order to prevent participants from misrepresenting their information, strategic bidding is formulated from the farmer’s perspective as an optimization problem; thereafter, optimal bidding strategies are formulated to refine the structure of the coordination mechanism in order to minimize the negative impact of strategic bidding. The coordination mechanism is shown to be robust against strategic behavior and to provide solutions with a small optimality gap. Additional information and managerial insights are obtained from bidding data collected throughout the mechanism. It is shown that, through hierarchical clustering, farmers can be effectively classified according to their cost structures.

Finally, considerations of stochastic yields as they pertain to coordination are addressed. Here, the farmer’s decision of how much to plant in order to meet contracted supply is modeled as a newsvendor with stochastic yields; furthermore, options contracts are made available to the farmer as tools for enhancing coordination. It is shown that the use of option contracts reduces the gap between expected harvest quantities and the contracted supply, thus facilitating coordination.
Date Created
2015
Agent

Reliability information and testing integration for new product design

152860-Thumbnail Image.png
Description
In the three phases of the engineering design process (conceptual design, embodiment design and detailed design), traditional reliability information is scarce. However, there are different sources of information that provide reliability inputs while designing a new product. This research considered

In the three phases of the engineering design process (conceptual design, embodiment design and detailed design), traditional reliability information is scarce. However, there are different sources of information that provide reliability inputs while designing a new product. This research considered these sources to be further analyzed: reliability information from similar existing products denominated as parents, elicited experts' opinions, initial testing and the customer voice for creating design requirements. These sources were integrated with three novels approaches to produce reliability insights in the engineering design process, all under the Design for Reliability (DFR) philosophy. Firstly, an enhanced parenting process to assess reliability was presented. Using reliability information from parents it was possible to create a failure structure (parent matrix) to be compared against the new product. Then, expert opinions were elicited to provide the effects of the new design changes (parent factor). Combining those two elements resulted in a reliability assessment in early design process. Extending this approach into the conceptual design phase, a methodology was created to obtain a graphical reliability insight of a new product's concept. The approach can be summarized by three sequential steps: functional analysis, cognitive maps and Bayesian networks. These tools integrated the available information, created a graphical representation of the concept and provided quantitative reliability assessments. Lastly, to optimize resources when product testing is viable (e.g., detailed design) a type of accelerated life testing was recommended: the accelerated degradation tests. The potential for robust design engineering for this type of test was exploited. Then, robust design was achieved by setting the design factors at some levels such that the impact of stress factor variation on the degradation rate can be minimized. Finally, to validate the proposed approaches and methods, different case studies were presented.
Date Created
2014
Agent

Matching supply and demand using dynamic quotation strategies

151051-Thumbnail Image.png
Description
Today's competitive markets force companies to constantly engage in the complex task of managing their demand. In make-to-order manufacturing or service systems, the demand of a product is shaped by price and lead times, where high price and lead time

Today's competitive markets force companies to constantly engage in the complex task of managing their demand. In make-to-order manufacturing or service systems, the demand of a product is shaped by price and lead times, where high price and lead time quotes ensure profitability for supplier, but discourage the customers from placing orders. Low price and lead times, on the other hand, generally result in high demand, but do not necessarily ensure profitability. The price and lead time quotation problem considers the trade-off between offering high and low prices and lead times. The recent practices in make-to- order manufacturing companies reveal the importance of dynamic quotation strategies, under which the prices and lead time quotes flexibly change depending on the status of the system. In this dissertation, the objective is to model a make-to-order manufacturing system and explore various aspects of dynamic quotation strategies such as the behavior of optimal price and lead time decisions, the impact of customer preferences on optimal decisions, the benefits of employing dynamic quotation in comparison to simpler quotation strategies, and the benefits of coordinating price and lead time decisions. I first consider a manufacturer that receives demand from spot purchasers (who are quoted dynamic price and lead times), as well as from contract customers who have agree- ments with the manufacturer with fixed price and lead time terms. I analyze how customer preferences affect the optimal price and lead time decisions, the benefits of dynamic quo- tation, and the optimal mix of spot purchaser and contract customers. These analyses necessitate the computation of expected tardiness of customer orders at the moment cus- tomer enters the system. Hence, in the second part of the dissertation, I develop method- ologies to compute the expected tardiness in multi-class priority queues. For the trivial single class case, a closed formulation is obtained. For the more complex multi-class case, numerical inverse Laplace transformation algorithms are developed. In the last part of the dissertation, I model a decentralized system with two components. Marketing department determines the price quotes with the objective of maximizing revenues, and manufacturing department determines the lead time quotes to minimize lateness costs. I discuss the ben- efits of coordinating price and lead time decisions, and develop an incentivization scheme to reduce the negative impacts of lack of coordination.
Date Created
2012
Agent

Competitive positioning of ports based on total landed costs of supply chains

149890-Thumbnail Image.png
Description
Nowadays ports play a critic role in the supply chains of contemporary companies and global commerce. Since the ports' operational effectiveness is critical on the development of competitive supply chains, their contribution to regional economies is essential. With the globalization

Nowadays ports play a critic role in the supply chains of contemporary companies and global commerce. Since the ports' operational effectiveness is critical on the development of competitive supply chains, their contribution to regional economies is essential. With the globalization of markets, the traffic of containers flowing through the different ports has increased significantly in the last decades. In order to attract additional container traffic and improve their comparative advantages over the competition, ports serving same hinterlands explore ways to improve their operations to become more attractive to shippers. This research explores the hypothesis that lowering the variability of the service time observed in the handling of containers, a port reduces the total logistics costs of their customers, increase its competiveness and that of their customers. This thesis proposes a methodology that allows the quantification of the variability existing in the services of a port derived from factors like inefficient internal operations, vessel congestion or external disruptions scenarios. It focuses on assessing the impact of this variability on the user's logistic costs. The methodology also allows a port to define competitive strategies that take into account its variability and that of competing ports. These competitive strategies are also translated into specific parameters that can be used to design and adjust internal operations. The methodology includes (1) a definition of a proper economic model to measure the logistic impact of port's variability, (2) a network analysis approach to the defined problem and (3) a systematic procedure to determine competitive service time parameters for a port. After the methodology is developed, a case study is presented where it is applied to the Port of Guaymas. This is done by finding service time parameters for this port that yield lower logistic costs than the observed in other competing ports.
Date Created
2011
Agent