Secondary teachers' and calculus students' meanings for fraction, measure and rate of change

155002-Thumbnail Image.png
Description
This dissertation reports three studies of students’ and teachers’ meanings for quotient, fraction, measure, rate, and rate of change functions. Each study investigated individual’s schemes (or meanings) for foundational mathematical ideas. Conceptual analysis of what constitutes strong meanings for fraction,

This dissertation reports three studies of students’ and teachers’ meanings for quotient, fraction, measure, rate, and rate of change functions. Each study investigated individual’s schemes (or meanings) for foundational mathematical ideas. Conceptual analysis of what constitutes strong meanings for fraction, measure, and rate of change is critical for each study. In particular, each study distinguishes additive and multiplicative meanings for fraction and rate of change.

The first paper reports an investigation of 251 high school mathematics teachers’ meanings for slope, measurement, and rate of change. Most teachers conveyed primarily additive and formulaic meanings for slope and rate of change on written items. Few teachers conveyed that a rate of change compares the relative sizes of changes in two quantities. Teachers’ weak measurement schemes were associated with limited meanings for rate of change. Overall, the data suggests that rate of change should be a topics of targeted professional development.

The second paper reports the quantitative part of a mixed method study of 153 calculus students at a large public university. The majority of calculus students not only have weak meanings for fraction, measure, and constant rates but that having weak meanings is predictive of lower scores on a test about rate of change functions. Regression is used to determine the variation in student success on questions about rate of change functions (derivatives) associated with variation in success on fraction, measure, rate, and covariation items.

The third paper investigates the implications of two students’ fraction schemes for their understanding of rate of change functions. Students’ weak measurement schemes obstructed their ability to construct a rate of change function given the graph of an original function. The two students did not coordinate three levels of units, and struggled to relate partitioning and iterating in a way that would help them reason about fractions, rate of change, and rate of change functions.

Taken as a whole the studies show that the majority of secondary teachers and calculus students studied have weak meanings for foundational ideas and that these weaknesses cause them problems in making sense of more applications of rate of change.
Date Created
2016
Agent

An investigation into the definitions and development of pedagogical content knowledge among pre-service and current mathematics teachers

154821-Thumbnail Image.png
Description
The principle purpose of this research was to compare two definitions and assessments of Mathematics Pedagogical Content Knowledge (PCK) and examine the development of that knowledge among pre-service and current math teachers. Seventy-eight current and future teachers took an online

The principle purpose of this research was to compare two definitions and assessments of Mathematics Pedagogical Content Knowledge (PCK) and examine the development of that knowledge among pre-service and current math teachers. Seventy-eight current and future teachers took an online version of the Measures of Knowledge for Teaching (MKT) - Mathematics assessment and nine of them took the Cognitively Activating Instruction in Mathematics (COACTIV) assessment. Participants answered questions that demonstrated their understanding of students' challenges and misconceptions, ability to recognize and utilize multiple representations and methods of presenting content, and understanding of tasks and materials that they may be using for instruction. Additionally, participants indicated their college major, institution attended, years of experience, and participation in various other learning opportunities. This data was analyzed to look for changes in knowledge, first among those still in college, then among those already in the field, and finally as a whole group to look for a pattern of growth from pre-service through working in the classroom. I compared these results to the theories of learning espoused by the creators of these two tests to see which model the data supports. The results indicate that growth in PCK occurs among college students during their teacher preparation program, with much less change once a teacher enters the field. Growth was not linear, but best modeled by an s-curve, showing slow initial changes, substantial development during the 2nd and 3rd year of college, and then a leveling off during the last year of college and the first few years working in a classroom. Among current teachers' the only group that demonstrated any measurable growth were teachers who majored in a non-education field. Other factors like internships and professional development did not show a meaningful correlation with PCK. Even though some of these models were statistically significant, they did not account for a substantial amount of the variation among individuals, indicating that personal factors and not programmatic ones may be the primary determinant of a teachers' knowledge.
Date Created
2016
Agent

Characterizing teacher change through the perturbation of pedagogical goals

154442-Thumbnail Image.png
Description
A teacher’s mathematical knowledge for teaching impacts the teacher’s pedagogical actions and goals (Marfai & Carlson, 2012; Moore, Teuscher, & Carlson, 2011), and a teacher’s instructional goals (Webb, 2011) influences the development of the teacher’s content knowledge for teaching. This

A teacher’s mathematical knowledge for teaching impacts the teacher’s pedagogical actions and goals (Marfai & Carlson, 2012; Moore, Teuscher, & Carlson, 2011), and a teacher’s instructional goals (Webb, 2011) influences the development of the teacher’s content knowledge for teaching. This study aimed to characterize the reciprocal relationship between a teacher’s mathematical knowledge for teaching and pedagogical goals.

Two exploratory studies produced a framework to characterize a teacher’s mathematical goals for student learning. A case study was then conducted to investigate the effect of a professional developmental intervention designed to impact a teacher’s mathematical goals. The guiding research questions for this study were: (a) what is the effect of a professional development intervention, designed to perturb a teacher’s pedagogical goals for student learning to be more attentive to students’ thinking and learning, on a teacher’s views of teaching, stated goals for student learning, and overarching goals for students’ success in mathematics, and (b) what role does a teacher's mathematical teaching orientation and mathematical knowledge for teaching have on a teacher’s stated and overarching goals for student learning?

Analysis of the data from this investigation revealed that a conceptual curriculum supported the advancement of a teacher’s thinking regarding the key ideas of mathematics of lessons, but without time to reflect and plan, the teacher made limited connections between the key mathematical ideas within and across lessons. The teacher’s overarching goals for supporting student learning and views of teaching mathematics also had a significant influence on her curricular choices and pedagogical moves when teaching. The findings further revealed that a teacher’s limited meanings for proportionality contributed to the teacher struggling during teaching to support students’ learning of concepts that relied on understanding proportionality. After experiencing this struggle the teacher reverted back to using skill-based lessons she had used before.

The findings suggest a need for further research on the impact of professional development of teachers, both in building meanings of key mathematical ideas of a teacher’s lessons, and in professional support and time for teachers to build stronger mathematical meanings, reflect on student thinking and learning, and reconsider one’s instructional goals.
Date Created
2016
Agent

Examinging nathematical knowledge for teaching in the mathematics teaching cycle: a multiple case study

152018-Thumbnail Image.png
Description
The research indicated effective mathematics teaching to be more complex than assuming the best predictor of student achievement in mathematics is the mathematical content knowledge of a teacher. This dissertation took a novel approach to addressing the idea of what

The research indicated effective mathematics teaching to be more complex than assuming the best predictor of student achievement in mathematics is the mathematical content knowledge of a teacher. This dissertation took a novel approach to addressing the idea of what it means to examine how a teacher's knowledge of mathematics impacts student achievement in elementary schools. Using a multiple case study design, the researcher investigated teacher knowledge as a function of the Mathematics Teaching Cycle (NCTM, 2007). Three cases (of two teachers each) were selected using a compilation of Learning Mathematics for Teaching (LMT) measures (LMT, 2006) and Developing Mathematical Ideas (DMI) measures (Higgins, Bell, Wilson, McCoach, & Oh, 2007; Bell, Wilson, Higgins, & McCoach, 2010) and student scores on the Arizona Assessment Collaborative (AzAC). The cases included teachers with: a) high knowledge & low student achievement v low knowledge & high student achievement, b) high knowledge & average achievement v low knowledge & average achievement, c) average knowledge & high achievement v average knowledge & low achievement, d) two teachers with average achievement & very high student achievement. In the end, my data suggested that MKT was only partially utilized across the contrasting teacher cases during the planning process, the delivery of mathematics instruction, and subsequent reflection. Mathematical Knowledge for Teaching was utilized differently by teachers with high student gains than those with low student gains. Because of this insight, I also found that MKT was not uniformly predictive of student gains across my cases, nor was it predictive of the quality of instruction provided to students in these classrooms.
Date Created
2013
Agent

From the Common Core to the classroom: a professional development efficacy study for the Common Core State Standards for Mathematics

151913-Thumbnail Image.png
Description
In this mixed-methods study, I examined the relationship between professional development based on the Common Core State Standards for Mathematics and teacher knowledge, classroom practice, and student learning. Participants were randomly assigned to experimental and control groups. The 50-hour professional

In this mixed-methods study, I examined the relationship between professional development based on the Common Core State Standards for Mathematics and teacher knowledge, classroom practice, and student learning. Participants were randomly assigned to experimental and control groups. The 50-hour professional development treatment was administered to the treatment group during one semester, and then a follow-up replication treatment was administered to the control group during the subsequent semester. Results revealed significant differences in teacher knowledge as a result of the treatment using two instruments. The Learning Mathematics for Teaching scales were used to detect changes in mathematical knowledge for teaching, and an online sorting task was used to detect changes in teachers' knowledge of their standards. Results also indicated differences in classroom practice between pairs of matched teachers selected to participate in classroom observations and interviews. No statistical difference was detected between the groups' student assessment scores using the district's benchmark assessment system. This efficacy study contributes to the literature in two ways. First, it provides an evidence base for a professional development model designed to promote effective implementation of the Common Core State Standards for Mathematics. Second, it addresses ways to impact and measure teachers' knowledge of curriculum in addition to their mathematical content knowledge. The treatment was designed to focus on knowledge of curriculum, but it also successfully impacted teachers' specialized content knowledge, knowledge of content and students, and knowledge of content and teaching.
Date Created
2013
Agent

Identity development of preservice elementary teachers of mathematics from teacher education program to student teaching

151123-Thumbnail Image.png
Description
Drawing on Lave and Wenger (1991) this study explores how preservice elementary teachers develop themselves as teachers of mathematics, in particular, from the time of their teacher education courses to their field experiences. This study also researches the critical experiences

Drawing on Lave and Wenger (1991) this study explores how preservice elementary teachers develop themselves as teachers of mathematics, in particular, from the time of their teacher education courses to their field experiences. This study also researches the critical experiences that contributed to the construction of their identities and their roles as student teachers in their identity development. The stories of Jackie, Meg, and Kerry show that they brought different incoming identities to the teacher education program based on their K-12 school experiences. The stories provide the evidence that student teachers' prior experience as learners of mathematics influenced their identities as teachers, especially their confidence levels in teaching mathematics. During the mathematics methods class, student teachers were provided a conceptual understanding of math content and new ways to think about math instruction. Based on student teachers' own experiences, they reconstructed their knowledge and beliefs about what it means to teach mathematics and set their goals to become the mathematics teachers they wanted to be. As they moved through the program through their student teaching periods, their identity development varied depending on the community of practice in which they participated. My study reveals that mentor relationships were critical experiences in shaping their identities as mathematics teachers and in building their initial mathematics teaching practices. Findings suggest that successful mentoring is necessary, and this generally requires sharing common goals, receiving feedback, and having opportunities to practice knowledge, skills, and identities on the part of beginning teachers. Findings from this study highlight that identities are not developed by the individual alone but by engagement with a given community of practice. This study adds to the field of teacher education research by focusing on prospective teachers' identity constructions in relation to the communities of practice, and also by emphasizing the role of mentor in preservice teachers' identity development.
Date Created
2012
Agent

Mathematical knowledge for teaching: exploring a teacher's sources of effectiveness

149801-Thumbnail Image.png
Description
This study contributes to the ongoing discussion of Mathematical Knowledge for Teaching (MKT). It investigates the case of Rico, a high school mathematics teacher who had become known to his colleagues and his students as a superbly effective mathematics teacher.

This study contributes to the ongoing discussion of Mathematical Knowledge for Teaching (MKT). It investigates the case of Rico, a high school mathematics teacher who had become known to his colleagues and his students as a superbly effective mathematics teacher. His students not only developed excellent mathematical skills, they also developed deep understanding of the mathematics they learned. Moreover, Rico redesigned his curricula and instruction completely so that they provided a means of support for his students to learn mathematics the way he intended. The purpose of this study was to understand the sources of Rico's effectiveness. The data for this study was generated in three phases. Phase I included videos of Rico's lessons during one semester of an Algebra II course, post-lesson reflections, and Rico's self-constructed instructional materials. An analysis of Phase I data led to Phase II, which consisted of eight extensive stimulated-reflection interviews with Rico. Phase III consisted of a conceptual analysis of the prior phases with the aim of creating models of Rico's mathematical conceptions, his conceptions of his students' mathematical understandings, and his images of instruction and instructional design. Findings revealed that Rico had developed profound personal understandings, grounded in quantitative reasoning, of the mathematics that he taught, and profound pedagogical understandings that supported these very same ways of thinking in his students. Rico's redesign was driven by three factors: (1) the particular way in which Rico himself understood the mathematics he taught, (2) his reflective awareness of those ways of thinking, and (3) his ability to envision what students might learn from different instructional approaches. Rico always considered what someone might already need to understand in order to understand "this" in the way he was thinking of it, and how understanding "this" might help students understand related ideas or methods. Rico's continual reflection on the mathematics he knew so as to make it more coherent, and his continual orientation to imagining how these meanings might work for students' learning, made Rico's mathematics become a mathematics of students--impacting how he assessed his practice and engaging him in a continual process of developing MKT.
Date Created
2011
Agent