Description
This dissertation reports three studies of students’ and teachers’ meanings for quotient, fraction, measure, rate, and rate of change functions. Each study investigated individual’s schemes (or meanings) for foundational mathematical ideas. Conceptual analysis of what constitutes strong meanings for fraction, measure, and rate of change is critical for each study. In particular, each study distinguishes additive and multiplicative meanings for fraction and rate of change.
The first paper reports an investigation of 251 high school mathematics teachers’ meanings for slope, measurement, and rate of change. Most teachers conveyed primarily additive and formulaic meanings for slope and rate of change on written items. Few teachers conveyed that a rate of change compares the relative sizes of changes in two quantities. Teachers’ weak measurement schemes were associated with limited meanings for rate of change. Overall, the data suggests that rate of change should be a topics of targeted professional development.
The second paper reports the quantitative part of a mixed method study of 153 calculus students at a large public university. The majority of calculus students not only have weak meanings for fraction, measure, and constant rates but that having weak meanings is predictive of lower scores on a test about rate of change functions. Regression is used to determine the variation in student success on questions about rate of change functions (derivatives) associated with variation in success on fraction, measure, rate, and covariation items.
The third paper investigates the implications of two students’ fraction schemes for their understanding of rate of change functions. Students’ weak measurement schemes obstructed their ability to construct a rate of change function given the graph of an original function. The two students did not coordinate three levels of units, and struggled to relate partitioning and iterating in a way that would help them reason about fractions, rate of change, and rate of change functions.
Taken as a whole the studies show that the majority of secondary teachers and calculus students studied have weak meanings for foundational ideas and that these weaknesses cause them problems in making sense of more applications of rate of change.
The first paper reports an investigation of 251 high school mathematics teachers’ meanings for slope, measurement, and rate of change. Most teachers conveyed primarily additive and formulaic meanings for slope and rate of change on written items. Few teachers conveyed that a rate of change compares the relative sizes of changes in two quantities. Teachers’ weak measurement schemes were associated with limited meanings for rate of change. Overall, the data suggests that rate of change should be a topics of targeted professional development.
The second paper reports the quantitative part of a mixed method study of 153 calculus students at a large public university. The majority of calculus students not only have weak meanings for fraction, measure, and constant rates but that having weak meanings is predictive of lower scores on a test about rate of change functions. Regression is used to determine the variation in student success on questions about rate of change functions (derivatives) associated with variation in success on fraction, measure, rate, and covariation items.
The third paper investigates the implications of two students’ fraction schemes for their understanding of rate of change functions. Students’ weak measurement schemes obstructed their ability to construct a rate of change function given the graph of an original function. The two students did not coordinate three levels of units, and struggled to relate partitioning and iterating in a way that would help them reason about fractions, rate of change, and rate of change functions.
Taken as a whole the studies show that the majority of secondary teachers and calculus students studied have weak meanings for foundational ideas and that these weaknesses cause them problems in making sense of more applications of rate of change.
Details
Title
- Secondary teachers' and calculus students' meanings for fraction, measure and rate of change
Contributors
- Byerley, Cameron (Author)
- Thompson, Patrick W (Thesis advisor)
- Carlson, Marilyn P (Committee member)
- Middleton, James A. (Committee member)
- Saldanha, Luis (Committee member)
- Mcnamara, Allen (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2016
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: Ph.D., Arizona State University, 2016
- bibliographyIncludes bibliographical references (pages 221-236)
- Field of study: Mathematics
Citation and reuse
Statement of Responsibility
by Cameron Byerley