Development of a concentrating solar water heater with phase change energy storage

154103-Thumbnail Image.png
Description
The complicated, unpredictable, and often chaotic hot water usage pattern of typical households severely limits the effectiveness and efficiency of traditional solar hot water heater systems. Similar to large scale concentrating solar power plants, the use of thermal energy storage

The complicated, unpredictable, and often chaotic hot water usage pattern of typical households severely limits the effectiveness and efficiency of traditional solar hot water heater systems. Similar to large scale concentrating solar power plants, the use of thermal energy storage techniques to store collected solar energy as latent heat has the potential to improve the efficiency of solar hot water systems. Rather than being used to produce steam to generate electricity, the stored thermal energy would be used to heat water on-demand well after the sun sets. The scope of this thesis was to design, analyze, build, and test a proof of concept prototype for an on-demand solar water heater for residential use with latent heat thermal energy storage. The proof of concept system will be used for future research and can be quickly reconfigured making it ideal for use as a test bed. This thesis outlines the analysis, design, and testing processes used to model, build, and evaluate the performance of the prototype system.

The prototype system developed to complete this thesis was designed using systems engineering principles and consists of several main subsystems. These subsystems include a parabolic trough concentrating solar collector, a phase change material reservoir including heat exchangers, a heat transfer fluid reservoir, and a plumbing system. The system functions by absorbing solar thermal energy in a heat transfer fluid using the solar collector and transferring the absorbed thermal energy to the phase change material for storage. The system was analyzed using a mathematical model created in MATLAB and experimental testing was used to verify that the system functioned as designed. The mathematical model was designed to be adaptable for evaluating different system configurations for future research. The results of the analysis as well as the experimental tests conducted, verify that the proof of concept system is functional and capable of producing hot water using stored thermal energy. This will allow the system to function as a test bed for future research and long-term performance testing to evaluate changes in the performance of the phase change material over time. With additional refinement the prototype system has the potential to be developed into a commercially viable product for use in residential homes.
Date Created
2015
Agent

Study to find out the optimum number of transparent covers and refractive index for the best performance of sunearth solar water heater using Matlab software

153470-Thumbnail Image.png
Description
Research was conducted to observe the effect of Number of Transparent Covers and Refractive Index on performance of a domestic Solar Water heating system. The enhancement of efficiency for solar thermal system is an emerging challenge. The knowledge gained from

Research was conducted to observe the effect of Number of Transparent Covers and Refractive Index on performance of a domestic Solar Water heating system. The enhancement of efficiency for solar thermal system is an emerging challenge. The knowledge gained from this research will enable to optimize the number of transparent covers and refractive index prior to develop a solar water heater with improved optical efficiency and thermal efficiency for the collector. Numerical simulation is conducted on the performance of the liquid flat plate collector for July 21st and October 21st from 8 am to 4 pm with different refractive index values 1.1, 1.4, 1.7 and different numbers of transparent covers (0-3). In order to accomplish the proposed method the formulation and solutions are executed using simple software MATLAB. The result demonstrates efficiency of flat plate collector increases with the increase of number of covers. The performance of collector decreases when refractive index is higher. The improved useful heat gain is obtained when number of cover used is 3 and refractive index is 1.1.
Date Created
2015
Agent

Potential materials for fuel cells

153168-Thumbnail Image.png
Description
Proton exchange membrane fuel cells have attracted immense research activities from the inception of the technology due to its high stability and performance capabilities. The major obstacle from commercialization is the cost of the catalyst material in manufacturing the fuel

Proton exchange membrane fuel cells have attracted immense research activities from the inception of the technology due to its high stability and performance capabilities. The major obstacle from commercialization is the cost of the catalyst material in manufacturing the fuel cell. In the present study, the major focus in PEMFCs has been in reduction of the cost of the catalyst material using graphene, thin film coated and Organometallic Molecular catalysts. The present research is focused on improving the durability and active surface area of the catalyst materials with low platinum loading using nanomaterials to reduce the effective cost of the fuel cells. Performance, Electrochemical impedance spectroscopy, oxygen reduction and surface morphology studies were performed on each manufactured material.

Alkaline fuel cells with anion exchange membrane get immense attention due to very attractive opportunity of using non-noble metal catalyst materials. In the present study, cathodes with various organometallic cathode materials were prepared and investigated for alkaline membrane fuel cells for oxygen reduction and performance studies. Co and Fe Phthalocyanine catalyst materials were deposited on multi-walled carbon nanotubes (MWCNTs) support materials. Membrane Electrode Assemblies (MEAs) were fabricated using Tokuyama Membrane (#A901) with cathodes containing Co and Fe Phthalocyanine/MWCNTs and Pt/C anodes. Fuel cell performance of the MEAs was examined.
Date Created
2014
Agent

Cooling strategy for effective automotive power trains: 3D thermal modeling and multi-faceted approach for integrating thermoelectric modules into proton exchange membrane fuel cell stack

153116-Thumbnail Image.png
Description
Current hybrid vehicle and/or Fuel Cell Vehicle (FCV) use both FC and an electric system. The sequence of the electric power train with the FC system is intended to achieve both better fuel economies than the conventional vehicles and higher

Current hybrid vehicle and/or Fuel Cell Vehicle (FCV) use both FC and an electric system. The sequence of the electric power train with the FC system is intended to achieve both better fuel economies than the conventional vehicles and higher performance. Current hybrids use regenerative braking technology, which converts the vehicles kinetic energy into electric energy instead of wasting it. A hybrid vehicle is much more fuel efficient than conventional Internal Combustion (IC) engine and has less environmental impact The new hybrid vehicle technology with it's advanced with configurations (i.e. Mechanical intricacy, advanced driving modes etc) inflict an intrusion with the existing Thermal Management System (TMS) of the conventional vehicles. This leaves for the opportunity for now thermal management issues which needed to be addressed. Till date, there has not been complete literature on thermal management issued of FC vehicles. The primary focus of this dissertation is on providing better cooling strategy for the advanced power trains. One of the cooling strategies discussed here is the thermo-electric modules.

The 3D Thermal modeling of the FC stack utilizes a Finite Differencing heat approach method augmented with empirical boundary conditions is employed to develop 3D thermal model for the integration of thermoelectric modules with Proton Exchange Membrane fuel cell stack. Hardware-in-Loop was designed under pre-defined drive cycle to obtain fuel cell performance parameters along with anode and cathode gas flow-rates and surface temperatures. The FC model, combined experimental and finite differencing nodal net work simulation modeling approach which implemented heat generation across the stack to depict the chemical composition process. The structural and temporal temperature contours obtained from this model are in compliance with the actual recordings obtained from the infrared detector and thermocouples. The Thermography detectors were set-up through dual band thermography to neutralize the emissivity and to give several dynamic ranges to achieve accurate temperature measurements. The thermocouples network was installed to provide a reference signal.

The model is harmonized with thermo-electric modules with a modeling strategy, which enables optimize better temporal profile across the stack. This study presents the improvement of a 3D thermal model for proton exchange membrane fuel cell stack along with the interfaced thermo-electric module. The model provided a virtual environment using a model-based design approach to assist the design engineers to manipulate the design correction earlier in the process and eliminate the need for costly and time consuming prototypes.
Date Created
2014
Agent

Model based automotive system integration: fuel cell vehicle hardware-in-the-loop

153009-Thumbnail Image.png
Description
Over the past decade, proton exchange membrane fuel cells have gained much momentum due to their environmental advantages and commutability over internal combustion engines. To carefully study the dynamic behavior of the fuel cells, a dynamic test stand to validate

Over the past decade, proton exchange membrane fuel cells have gained much momentum due to their environmental advantages and commutability over internal combustion engines. To carefully study the dynamic behavior of the fuel cells, a dynamic test stand to validate their performance is necessary. Much attention has been given to HiL (Hardware-in-loop) testing of the fuel cells, where the simulated FC model is replaced by a real hardware. This thesis presents an economical approach for closed loop HiL testing of PEM fuel cell. After evaluating the performance of the standalone fuel cell system, a fuel cell hybrid electric vehicle model was developed by incorporating a battery system. The FCHEV was tested with two different control strategies, viz. load following and thermostatic.

The study was done to determine the dynamic behavior of the FC when exposed to real-world drive cycles. Different parameters associated with the efficiency of the fuel cell were monitored. An electronic DC load was used to draw current from the FC. The DC load was controlled in real time with a NI PXIe-1071 controller chassis incorporated with NI PXI-6722 and NI PXIe-6341 controllers. The closed loop feedback was obtained with the temperatures from two surface mount thermocouples on the FC. The temperature of these thermocouples follows the curve of the FC core temperature, which is measured with a thermocouple located inside the fuel cell system. This indicates successful implementation of the closed loop feedback. The results show that the FC was able to satisfy the required power when continuous shifting load was present, but there was a discrepancy between the power requirements at times of peak acceleration and also at constant loads when ran for a longer time. It has also been found that further research is required to fully understand the transient behavior of the fuel cell temperature distribution in relation to their use in automotive industry. In the experimental runs involving the FCHEV model with different control strategies, it was noticed that the fuel cell response to transient loads improved and the hydrogen consumption of the fuel cell drastically decreased.
Date Created
2014
Agent

State of health determination of batteries at various operating conditions

152603-Thumbnail Image.png
Description
Objective of the study is to get a clear idea on the cyclic performance of duty operation of Batteries. Batteries are an integral part of solar plants and wind energy farms due to the fact that energy storage is vital

Objective of the study is to get a clear idea on the cyclic performance of duty operation of Batteries. Batteries are an integral part of solar plants and wind energy farms due to the fact that energy storage is vital in these places. Various types of losses related to the performance are clearly analyzed and studied. Assessment of State Of Health and State Of Charge is critical in order to maximize the performance and lifetime of a battery. Batteries were subjected to temperature and charge/discharge rate variations and found that the state of health degradation was severe at high temperature along with faster rate of charging compared to other evaluation conditions. The entire research was conducted at the Alternative Energy Technology Laboratory located at Arizona State University, Mesa. It involved the use of various instruments namely the Programmable Voltage Regulator for charging, Computerized Battery Analyzer and Programmable Electric Load for discharging and also the PARSTAT potentiostat for measuring the impedance of various battery technologies under study. At first, the Batteries were discharged and based on the time taken, it was charged for the next cycle. Impedance measurement was done at regular cycle intervals in order to study the degradation of health. For every cycle, the battery capacity was also calculated and noted down. . The results obtained show that low and stable impedance over the given cycle life is an important consideration in the selection of batteries according to the applications.
Date Created
2014
Agent

Battery performance and electrode corrosion

152347-Thumbnail Image.png
Description
Battery performance has been studied at different temperature, C rate. Different types of batteries have been used. Capacity and impedance are two factors, which are focused in the thesis. To evaluate battery performance and battery conditions, the SOC (state of

Battery performance has been studied at different temperature, C rate. Different types of batteries have been used. Capacity and impedance are two factors, which are focused in the thesis. To evaluate battery performance and battery conditions, the SOC (state of charge) determination methods have been studied in the thesis. There are two types of batteries divided in three groups: group I. Ni-Cd battery (2V, 8Ah); group II. Lead-acid battery (2V, 8Ah); and group III. Lead-acid battery (2V, 25Ah). The impedance testing is using electrochemical impedance spectroscopy methods. AC impedance method has been used to test different state of charge (100%, 80%, 60%, 40%, 20%). For the corrosion part, the corrosion rate of metal material in the heat transfer fluids has been tested at different temperature. Hastelloys C-276 in eutectic molten salts a mixture of NaCl, KCl and ZnCl2 using potentiodynamic method (swap from ± 30 mV in 0.2 mV.s-1). The lowest corrosion rate of Hastelloy C-276 is 5.51 µm per year at 250 °C. Particularly, the corrosion rate of Hastelloy C-276 jumps up to 53.33 µm per year at 400 °C.
Date Created
2013
Agent

Surface characterization of an organized titanium dioxide Layer

152125-Thumbnail Image.png
Description
Soft lithographic printing techniques can be used to control the surface morphology of titanium dioxide layers on length scales of several hundred nanometers. Controlling surface morphology and volumetric organization of titanium dioxide electrodes can potentially be used in dye-sensitized solar

Soft lithographic printing techniques can be used to control the surface morphology of titanium dioxide layers on length scales of several hundred nanometers. Controlling surface morphology and volumetric organization of titanium dioxide electrodes can potentially be used in dye-sensitized solar cell devices. This thesis explores how layer-by-layer replication can lead to well defined, dimensionally controlled volumes and details how these control mechanisms influence surface characteristics of the semiconducting oxide.
Date Created
2013
Agent

Hybrid microgrid model based on solar photovoltaics with batteries and fuel cells system for intermittent applications

151534-Thumbnail Image.png
Description
Microgrids are a subset of the modern power structure; using distributed generation (DG) to supply power to communities rather than vast regions. The reduced scale mitigates loss allowing the power produced to do more with better control, giving greater security,

Microgrids are a subset of the modern power structure; using distributed generation (DG) to supply power to communities rather than vast regions. The reduced scale mitigates loss allowing the power produced to do more with better control, giving greater security, reliability, and design flexibility. This paper explores the performance and cost viability of a hybrid grid-tied microgrid that utilizes Photovoltaic (PV), batteries, and fuel cell (FC) technology. The concept proposes that each community home is equipped with more PV than is required for normal operation. As the homes are part of a microgrid, excess or unused energy from one home is collected for use elsewhere within the microgrid footprint. The surplus power that would have been discarded becomes a community asset, and is used to run intermittent services. In this paper, the modeled community does not have parking adjacent to each home allowing for the installment of a privately owned slower Level 2 charger, making EV ownership option untenable. A solution is to provide a Level 3 DC Quick Charger (DCQC) as the intermittent service. The addition of batteries and Fuel Cells are meant to increase load leveling, reliability, and instill limited island capability.
Date Created
2013
Agent

Feasibility of energy harvesting using a piezoelectric tire

151426-Thumbnail Image.png
Description
While the piezoelectric effect has been around for some time, it has only recently caught interest as a potential sustainable energy harvesting device. Piezoelectric energy harvesting has been developed for shoes and panels, but has yet to be integrated into

While the piezoelectric effect has been around for some time, it has only recently caught interest as a potential sustainable energy harvesting device. Piezoelectric energy harvesting has been developed for shoes and panels, but has yet to be integrated into a marketable bicycle tire. For this thesis, the development and feasibility of a piezoelectric tire was done. This includes the development of a circuit that incorporates piezoceramic elements, energy harvesting circuitry, and an energy storage device. A single phase circuit was designed using an ac-dc diode rectifier. An electrolytic capacitor was used as the energy storage device. A financial feasibility was also done to determine targets for manufacturing cost and sales price. These models take into account market trends for high performance tires, economies of scale, and the possibility of government subsidies. This research will help understand the potential for the marketability of a piezoelectric energy harvesting tire that can create electricity for remote use. This study found that there are many obstacles that must be addressed before a piezoelectric tire can be marketed to the general public. The power output of this device is miniscule compared to an alkaline battery. In order for this device to approach the power output of an alkaline battery the weight of the device would also become an issue. Additionally this device is very costly compared to the average bicycle tire. Lastly, this device is extreme fragile and easily broken. In order for this device to become marketable the issues of power output, cost, weight, and durability must all be successfully overcome.
Date Created
2012
Agent