Fully passive wireless acquisition of neuropotentials

153006-Thumbnail Image.png
Description
The ability to monitor electrophysiological signals from the sentient brain is requisite to decipher its enormously complex workings and initiate remedial solutions for the vast amount of neurologically-based disorders. Despite immense advancements in creating a variety of instruments to record

The ability to monitor electrophysiological signals from the sentient brain is requisite to decipher its enormously complex workings and initiate remedial solutions for the vast amount of neurologically-based disorders. Despite immense advancements in creating a variety of instruments to record signals from the brain, the translation of such neurorecording instrumentation to real clinical domains places heavy demands on their safety and reliability, both of which are not entirely portrayed by presently existing implantable recording solutions. In an attempt to lower these barriers, alternative wireless radar backscattering techniques are proposed to render the technical burdens of the implant chip to entirely passive neurorecording processes that transpire in the absence of formal integrated power sources or powering schemes along with any active circuitry. These radar-like wireless backscattering mechanisms are used to conceive of fully passive neurorecording operations of an implantable microsystem. The fully passive device potentially manifests inherent advantages over current wireless implantable and wired recording systems: negligible heat dissipation to reduce risks of brain tissue damage and minimal circuitry for long term reliability as a chronic implant. Fully passive neurorecording operations are realized via intrinsic nonlinear mixing properties of the varactor diode. These mixing and recording operations are directly activated by wirelessly interrogating the fully passive device with a microwave carrier signal. This fundamental carrier signal, acquired by the implant antenna, mixes through the varactor diode along with the internal targeted neuropotential brain signals to produce higher frequency harmonics containing the targeted neuropotential signals. These harmonics are backscattered wirelessly to the external interrogator that retrieves and recovers the original neuropotential brain signal. The passive approach removes the need for internal power sources and may alleviate heat trauma and reliability issues that limit practical implementation of existing implantable neurorecorders.
Date Created
2014
Agent

Application of low frequency focused ultrasound waves ripen the rat cervix during pregnancy

151372-Thumbnail Image.png
Description
The object of this study is to charac terize the effect of focused ultrasound stimulation (FUS) on the rat ce rvix which has been observed to speed its ripening during pregnancy. Ce rvical ripening is required for successful fetal delivery.

The object of this study is to charac terize the effect of focused ultrasound stimulation (FUS) on the rat ce rvix which has been observed to speed its ripening during pregnancy. Ce rvical ripening is required for successful fetal delivery. Timed-pregnant Sprague-Dawley rats (n=36) were used. On day 14 of gestation, the FUS system was placed on the body surface of the rat over the cervix and ultrasound energy was applied to cervix for variable times up to 1 hour in the control group, the FUS system was placed on rats but no energy was applied. Daily measurement of cervix light-induced florescence (LIF, photon counts of collagen x-bridge fluorescence) were made on days 16 of gestation and daily until spont-aneous delivery (day22) to estimate changes in cervical ripening. We found that pulses of 680 KHz ultrasound at 25 Hertz, 1 millisecond pulse duration at 1W/cm^2 applied for as little as 30 minutes would immediately afterwards show the cervix to hav e ripened to the degree seen just before delivery on day 22. Delivery times, fetal weights and viability were unaffected in the FUS-treated animals.
Date Created
2012
Agent

Computational modeling of peptide-protein binding

149386-Thumbnail Image.png
Description
Peptides offer great promise as targeted affinity ligands, but the space of possible peptide sequences is vast, making experimental identification of lead candidates expensive, difficult, and uncertain. Computational modeling can narrow the search by estimating the affinity and specificity

Peptides offer great promise as targeted affinity ligands, but the space of possible peptide sequences is vast, making experimental identification of lead candidates expensive, difficult, and uncertain. Computational modeling can narrow the search by estimating the affinity and specificity of a given peptide in relation to a predetermined protein target. The predictive performance of computational models of interactions of intermediate-length peptides with proteins can be improved by taking into account the stochastic nature of the encounter and binding dynamics. A theoretical case is made for the hypothesis that, because of the flexibility of the peptide and the structural complexity of the target protein, interactions are best characterized by an ensemble of possible bound configurations rather than a single “lock and key” fit. A model incorporating these factors is proposed and evaluated. A comprehensive dataset of 3,924 peptide-protein interface structures was extracted from the Protein Data Bank (PDB) and descriptors were computed characterizing the geometry and energetics of each interface. The characteristics of these interfaces are shown to be generally consistent with the proposed model, and heuristics for design and selection of peptide ligands are derived. The curated and energy-minimized interface structure dataset and a relational database containing the detailed results of analysis and energy modeling are made publicly available via a web repository. A novel analytical technique based on the proposed theoretical model, Virtual Scanning Probe Mapping (VSPM), is implemented in software to analyze the interaction between a target protein of known structure and a peptide of specified sequence, producing a spatial map indicating the most likely peptide binding regions on the protein target. The resulting predictions are shown to be superior to those of two other published methods, and support the validity of the stochastic binding model.
Date Created
2010
Agent