A cationic probe to detect microstructure in fenestrated organs

151267-Thumbnail Image.png
Description
The goal of the works presented in this volume is to develop a magnetic resonance imaging (MRI) probe for non-invasive detection of extracellular matrix (ECM) underlying fenestrated endothelia. The ECM is the scaffold that supports tissue structure in all organs.

The goal of the works presented in this volume is to develop a magnetic resonance imaging (MRI) probe for non-invasive detection of extracellular matrix (ECM) underlying fenestrated endothelia. The ECM is the scaffold that supports tissue structure in all organs. In fenestrated structures the such as the kidney glomerulus and the hepatic sinusoid the ECM serves a unique role in blood filtration and is directly exposed to blood plasma. An assessment of the ECM in fenestrated organs such as the kidney and liver reports on the organ's ability to filter blood - a process critical to maintaining homeostasis. Unfortunately, clinical assessment of the ECM in most organs requires biopsy, which is focal and invasive. This work will focus on visualizing the ECM underlying fenestrated endothelia with natural nanoparticles and MRI. The superparamagnetic ferritin protein has been proposed as a useful naturally-derived, MRI-detectable nanoparticle due to its biocompatibility, ease of functionalization, and modifiable metallic core. We will show that cationized ferritin (CF) specifically binds to the anionic proteoglycans of the ECM underlying fenestrated endothelia and that its accumulation is MRI-detectable. We will then demonstrate the use of CF and MRI in identifying and measuring all glomeruli in the kidney. We will also explore the toxicity of intravenously injected CF and consider other avenues for its application, including detection of microstructural changes in the liver due to chronic liver disease. This work will show that CF is useful in detected fenestrated microstructures in small animals and humans alike, indicating that CF may find broad application in detecting and monitoring disease in both preclinical and clinical settings.
Date Created
2012
Agent

Computational modeling of peptide-protein binding

149386-Thumbnail Image.png
Description
Peptides offer great promise as targeted affinity ligands, but the space of possible peptide sequences is vast, making experimental identification of lead candidates expensive, difficult, and uncertain. Computational modeling can narrow the search by estimating the affinity and specificity

Peptides offer great promise as targeted affinity ligands, but the space of possible peptide sequences is vast, making experimental identification of lead candidates expensive, difficult, and uncertain. Computational modeling can narrow the search by estimating the affinity and specificity of a given peptide in relation to a predetermined protein target. The predictive performance of computational models of interactions of intermediate-length peptides with proteins can be improved by taking into account the stochastic nature of the encounter and binding dynamics. A theoretical case is made for the hypothesis that, because of the flexibility of the peptide and the structural complexity of the target protein, interactions are best characterized by an ensemble of possible bound configurations rather than a single “lock and key” fit. A model incorporating these factors is proposed and evaluated. A comprehensive dataset of 3,924 peptide-protein interface structures was extracted from the Protein Data Bank (PDB) and descriptors were computed characterizing the geometry and energetics of each interface. The characteristics of these interfaces are shown to be generally consistent with the proposed model, and heuristics for design and selection of peptide ligands are derived. The curated and energy-minimized interface structure dataset and a relational database containing the detailed results of analysis and energy modeling are made publicly available via a web repository. A novel analytical technique based on the proposed theoretical model, Virtual Scanning Probe Mapping (VSPM), is implemented in software to analyze the interaction between a target protein of known structure and a peptide of specified sequence, producing a spatial map indicating the most likely peptide binding regions on the protein target. The resulting predictions are shown to be superior to those of two other published methods, and support the validity of the stochastic binding model.
Date Created
2010
Agent