Towards Robust VQA: Evaluations and Methods

190815-Thumbnail Image.png
Description
Visual Question Answering (VQA) is an increasingly important multi-modal task where models must answer textual questions based on visual image inputs. Numerous VQA datasets have been proposed to train and evaluate models. However, existing benchmarks exhibit a unilateral focus on

Visual Question Answering (VQA) is an increasingly important multi-modal task where models must answer textual questions based on visual image inputs. Numerous VQA datasets have been proposed to train and evaluate models. However, existing benchmarks exhibit a unilateral focus on textual distribution shifts rather than joint shifts across modalities. This is suboptimal for properly assessing model robustness and generalization. To address this gap, a novel multi-modal VQA benchmark dataset is introduced for the first time. This dataset combines both visual and textual distribution shifts across training and test sets. Using this challenging benchmark exposes vulnerabilities in existing models relying on spurious correlations and overfitting to dataset biases. The novel dataset advances the field by enabling more robust model training and rigorous evaluation of multi-modal distribution shift generalization. In addition, a new few-shot multi-modal prompt fusion model is proposed to better adapt models for downstream VQA tasks. The model incorporates a prompt encoder module and dual-path design to align and fuse image and text prompts. This represents a novel prompt learning approach tailored for multi-modal learning across vision and language. Together, the introduced benchmark dataset and prompt fusion model address key limitations around evaluating and improving VQA model robustness. The work expands the methodology for training models resilient to multi-modal distribution shifts.
Date Created
2023
Agent

When is temporal planning really temporal

151471-Thumbnail Image.png
Description
In this dissertation I develop a deep theory of temporal planning well-suited to analyzing, understanding, and improving the state of the art implementations (as of 2012). At face-value the work is strictly theoretical; nonetheless its impact is entirely real and

In this dissertation I develop a deep theory of temporal planning well-suited to analyzing, understanding, and improving the state of the art implementations (as of 2012). At face-value the work is strictly theoretical; nonetheless its impact is entirely real and practical. The easiest portion of that impact to highlight concerns the notable improvements to the format of the temporal fragment of the International Planning Competitions (IPCs). Particularly: the theory I expound upon here is the primary cause of--and justification for--the altered (i) selection of benchmark problems, and (ii) notion of "winning temporal planner". For higher level motivation: robotics, web service composition, industrial manufacturing, business process management, cybersecurity, space exploration, deep ocean exploration, and logistics all benefit from applying domain-independent automated planning technique. Naturally, actually carrying out such case studies has much to offer. For example, we may extract the lesson that reasoning carefully about deadlines is rather crucial to planning in practice. More generally, effectively automating specifically temporal planning is well-motivated from applications. Entirely abstractly, the aim is to improve the theory of automated temporal planning by distilling from its practice. My thesis is that the key feature of computational interest is concurrency. To support, I demonstrate by way of compilation methods, worst-case counting arguments, and analysis of algorithmic properties such as completeness that the more immediately pressing computational obstacles (facing would-be temporal generalizations of classical planning systems) can be dealt with in theoretically efficient manner. So more accurately the technical contribution here is to demonstrate: The computationally significant obstacle to automated temporal planning that remains is just concurrency.
Date Created
2012
Agent