Pervasive quantied-self using multiple sensors

157653-Thumbnail Image.png
Description
The advent of commercial inexpensive sensors and the advances in information and communication technology (ICT) have brought forth the era of pervasive Quantified-Self. Automatic diet monitoring is one of the most important aspects for Quantified-Self because it is vital for

The advent of commercial inexpensive sensors and the advances in information and communication technology (ICT) have brought forth the era of pervasive Quantified-Self. Automatic diet monitoring is one of the most important aspects for Quantified-Self because it is vital for ensuring the well-being of patients suffering from chronic diseases as well as for providing a low cost means for maintaining the health for everyone else. Automatic dietary monitoring consists of: a) Determining the type and amount of food intake, and b) Monitoring eating behavior, i.e., time, frequency, and speed of eating. Although there are some existing techniques towards these ends, they suffer from issues of low accuracy and low adherence. To overcome these issues, multiple sensors were utilized because the availability of affordable sensors that can capture the different aspect information has the potential for increasing the available knowledge for Quantified-Self. For a), I envision an intelligent dietary monitoring system that automatically identifies food items by using the knowledge obtained from visible spectrum camera and infrared spectrum camera. This system is able to outperform the state-of-the-art systems for cooked food recognition by 25% while also minimizing user intervention. For b), I propose a novel methodology, IDEA that performs accurate eating action identification within eating episodes with an average F1-score of 0.92. This is an improvement of 0.11 for precision and 0.15 for recall for the worst-case users as compared to the state-of-the-art. IDEA uses only a single wrist-band which includes four sensors and provides feedback on eating speed every 2 minutes without obtaining any manual input from the user.
Date Created
2019
Agent

MirrorGen Wearable Gesture Recognition using Synthetic Videos

156783-Thumbnail Image.png
Description
In recent years, deep learning systems have outperformed traditional machine learning systems in most domains. There has been a lot of research recently in the field of hand gesture recognition using wearable sensors due to the numerous advantages these systems

In recent years, deep learning systems have outperformed traditional machine learning systems in most domains. There has been a lot of research recently in the field of hand gesture recognition using wearable sensors due to the numerous advantages these systems have over vision-based ones. However, due to the lack of extensive datasets and the nature of the Inertial Measurement Unit (IMU) data, there are difficulties in applying deep learning techniques to them. Although many machine learning models have good accuracy, most of them assume that training data is available for every user while other works that do not require user data have lower accuracies. MirrorGen is a technique which uses wearable sensor data and generates synthetic videos using hand movements and it mitigates the traditional challenges of vision based recognition such as occlusion, lighting restrictions, lack of viewpoint variations, and environmental noise. In addition, MirrorGen allows for user-independent recognition involving minimal human effort during data collection. It also helps leverage the advances in vision-based recognition by using various techniques like optical flow extraction, 3D convolution. Projecting the orientation (IMU) information to a video helps in gaining position information of the hands. To validate these claims, we perform entropy analysis on various configurations such as raw data, stick model, hand model and real video. Human hand model is found to have an optimal entropy that helps in achieving user independent recognition. It also serves as a pervasive option as opposed to a video-based recognition. The average user independent recognition accuracy of 99.03% was achieved for a sign language dataset with 59 different users, 20 different signs with 20 repetitions each for a total of 23k training instances. Moreover, synthetic videos can be used to augment real videos to improve recognition accuracy.
Date Created
2018
Agent

Evaluation of a Guided Machine Learning Approach for Pharmacokinetic Modeling

155869-Thumbnail Image.png
Description
A medical control system, a real-time controller, uses a predictive model of human physiology for estimation and controlling of drug concentration in the human body. Artificial Pancreas (AP) is an example of the control system which regulates blood glucose in

A medical control system, a real-time controller, uses a predictive model of human physiology for estimation and controlling of drug concentration in the human body. Artificial Pancreas (AP) is an example of the control system which regulates blood glucose in T1D patients. The predictive model in the control system such as Bergman Minimal Model (BMM) is based on physiological modeling technique which separates the body into the number of anatomical compartments and each compartment's effect on body system is determined by their physiological parameters. These models are less accurate due to unaccounted physiological factors effecting target values. Estimation of a large number of physiological parameters through optimization algorithm is computationally expensive and stuck in local minima. This work evaluates a machine learning(ML) framework which has an ML model guided through physiological models. A support vector regression model guided through modified BMM is implemented for estimation of blood glucose levels. Physical activity and Endogenous glucose production are key factors that contribute in the increased hypoglycemia events thus, this work modifies Bergman Minimal Model ( Bergman et al. 1981) for more accurate estimation of blood glucose levels. Results show that the SVR outperformed BMM by 0.164 average RMSE for 7 different patients in the free-living scenario. This computationally inexpensive data driven model can potentially learn parameters more accurately with time. In conclusion, advised prediction model is promising in modeling the physiology elements in living systems.
Date Created
2017
Agent

Model based safety analysis and verification of cyber-physical systems

151405-Thumbnail Image.png
Description
Critical infrastructures in healthcare, power systems, and web services, incorporate cyber-physical systems (CPSes), where the software controlled computing systems interact with the physical environment through actuation and monitoring. Ensuring software safety in CPSes, to avoid hazards to property and human

Critical infrastructures in healthcare, power systems, and web services, incorporate cyber-physical systems (CPSes), where the software controlled computing systems interact with the physical environment through actuation and monitoring. Ensuring software safety in CPSes, to avoid hazards to property and human life as a result of un-controlled interactions, is essential and challenging. The principal hurdle in this regard is the characterization of the context driven interactions between software and the physical environment (cyber-physical interactions), which introduce multi-dimensional dynamics in space and time, complex non-linearities, and non-trivial aggregation of interaction in case of networked operations. Traditionally, CPS software is tested for safety either through experimental trials, which can be expensive, incomprehensive, and hazardous, or through static analysis of code, which ignore the cyber-physical interactions. This thesis considers model based engineering, a paradigm widely used in different disciplines of engineering, for safety verification of CPS software and contributes to three fundamental phases: a) modeling, building abstractions or models that characterize cyberphysical interactions in a mathematical framework, b) analysis, reasoning about safety based on properties of the model, and c) synthesis, implementing models on standard testbeds for performing preliminary experimental trials. In this regard, CPS modeling techniques are proposed that can accurately capture the context driven spatio-temporal aggregate cyber-physical interactions. Different levels of abstractions are considered, which result in high level architectural models, or more detailed formal behavioral models of CPSes. The outcomes include, a well defined architectural specification framework called CPS-DAS and a novel spatio-temporal formal model called Spatio-Temporal Hybrid Automata (STHA) for CPSes. Model analysis techniques are proposed for the CPS models, which can simulate the effects of dynamic context changes on non-linear spatio-temporal cyberphysical interactions, and characterize aggregate effects. The outcomes include tractable algorithms for simulation analysis and for theoretically proving safety properties of CPS software. Lastly a software synthesis technique is proposed that can automatically convert high level architectural models of CPSes in the healthcare domain into implementations in high level programming languages. The outcome is a tool called Health-Dev that can synthesize software implementations of CPS models in healthcare for experimental verification of safety properties.
Date Created
2012
Agent