157653-Thumbnail Image.png
Description
The advent of commercial inexpensive sensors and the advances in information and communication technology (ICT) have brought forth the era of pervasive Quantified-Self. Automatic diet monitoring is one of the most important aspects for Quantified-Self because it is vital for

The advent of commercial inexpensive sensors and the advances in information and communication technology (ICT) have brought forth the era of pervasive Quantified-Self. Automatic diet monitoring is one of the most important aspects for Quantified-Self because it is vital for ensuring the well-being of patients suffering from chronic diseases as well as for providing a low cost means for maintaining the health for everyone else. Automatic dietary monitoring consists of: a) Determining the type and amount of food intake, and b) Monitoring eating behavior, i.e., time, frequency, and speed of eating. Although there are some existing techniques towards these ends, they suffer from issues of low accuracy and low adherence. To overcome these issues, multiple sensors were utilized because the availability of affordable sensors that can capture the different aspect information has the potential for increasing the available knowledge for Quantified-Self. For a), I envision an intelligent dietary monitoring system that automatically identifies food items by using the knowledge obtained from visible spectrum camera and infrared spectrum camera. This system is able to outperform the state-of-the-art systems for cooked food recognition by 25% while also minimizing user intervention. For b), I propose a novel methodology, IDEA that performs accurate eating action identification within eating episodes with an average F1-score of 0.92. This is an improvement of 0.11 for precision and 0.15 for recall for the worst-case users as compared to the state-of-the-art. IDEA uses only a single wrist-band which includes four sensors and provides feedback on eating speed every 2 minutes without obtaining any manual input from the user.


Download restricted.
Download count: 1

Details

Title
  • Pervasive quantied-self using multiple sensors
  • Pervasive quantified-self using multiple sensors
Contributors
Date Created
2019
Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2019
    • bibliography
      Includes bibliographical references
    • Field of study: Computer engineering

    Citation and reuse

    Statement of Responsibility

    by Junghyo Lee

    Machine-readable links