Advancing Transportation Climate Vulnerability Assessment Across Infrastructure and Travel Behavior

171906-Thumbnail Image.png
Description
Infrastructure systems are facing non-stationary challenges that stem from climate change and the increasingly complex interactions between the social, ecological, and technological systems (SETSs). It is crucial for transportation infrastructures—which enable residents to access opportunities and foster prosperity, quality of

Infrastructure systems are facing non-stationary challenges that stem from climate change and the increasingly complex interactions between the social, ecological, and technological systems (SETSs). It is crucial for transportation infrastructures—which enable residents to access opportunities and foster prosperity, quality of life, and social connections—to be resilient under these non-stationary challenges. Vulnerability assessment (VA) examines the potential consequences a system is likely to experience due to exposure to perturbation or stressors and lack of the capacity to adapt. Post-fire debris flow and heat represent particularly challenging problems for infrastructure and users in the arid U.S. West. Post-fire debris flow, which is manifested with heat and drought, produces powerful runoff threatening physical transportation infrastructures. And heat waves have devastating health effects on transportation infrastructure users, including increased mortality rates. VA anticipates the potential consequences of these perturbations and enables infrastructure stakeholders to improve the system's resilience. The current transportation climate VA—which only considers a single direct climate stressor on the infrastructure—falls short of addressing the wildfire and heat challenges. This work proposes advanced transportation climate VA methods to address the complex and multiple climate stressors and the vulnerability of infrastructure users. Two specific regions were chosen to carry out the progressive transportation climate VA: 1) the California transportation networks’ vulnerability to post-fire debris flows, and 2) the transportation infrastructure user’s vulnerability to heat exposure in Phoenix.
Date Created
2022
Agent

Repurposing Mesoscale Traffic Models for Insights into Traveler Heat Exposure Mitigation: Icarus and the case of Phoenix

161203-Thumbnail Image.png
Description

To address the dearth of knowledge about person-based and trip-level exposure, we developed the Icarus model. Icarus uses mesoscale traffic model—activity-based model—to analyze the heat exposure of regions of interest at an individual level. The goal with Icarus was to

To address the dearth of knowledge about person-based and trip-level exposure, we developed the Icarus model. Icarus uses mesoscale traffic model—activity-based model—to analyze the heat exposure of regions of interest at an individual level. The goal with Icarus was to design accurate, granular models of population and temperature behavior for a target region, which could be transformed into a heat exposure model by means of simulation and spatial-temporal joining. By combining and implementing the most robust software and data available, Icarus was able to capture person-based exposure with unparalleled detail. Here we describe the model methodology. We use the metropolitan region of Phoenix, Arizona, USA to carry out a case study using Icarus.

Agent

Sustainable Infrastructure and South Mountain Village: Water

Description

This study addresses the social and physical constraints and opportunities for South Mountain Village, particularly along the Rio Salado as it intersects with the proposed light rail extension on Central Avenue. The primary goals guiding this document are ecological restoration,

This study addresses the social and physical constraints and opportunities for South Mountain Village, particularly along the Rio Salado as it intersects with the proposed light rail extension on Central Avenue. The primary goals guiding this document are ecological restoration, social and physical connectivity, maintenance, management, development and future planning. This study discusses the history of the Rio Salado riparian area, analyses current riparian conditions, and provides context from similar cases both locally and nationally.

It has been demonstrated that access to recreational opportunities can improve the livelihood and reduce negative health effects for residents nearby. With this in mind, the physical connectivity of South Mountain residents is assessed to determine the degree of accessibility to recreational areas of the Rio Salado. This analysis will also be used to address areas in which residents do not have equitable access and will be used to guide recommendations to increase that access. Additionally, as growth occurs, existing social vulnerability concerns are addressed in regard to marginalized populations relying on the area’s ecological and grey infrastructure for refuge.

As the Rio Salado 2.0 Project and the Valley Metro South Central light rail extension begins construction and the opportunity to develop increases, residents and business owners are concerned that redevelopment will affect the integrity and connectivity of the area. This study outlines how these changes may affect stakeholders while keeping the area accessible and equitable for all. Evaluation of the sites and parcels surrounding the Rio Salado for future development while taking into account its rich history and needs of the community is important for the community and the City of Phoenix as a whole. This study incorporates concepts from the Rio Salado Beyond the Banks Area Plan and other existing plans and regulations for the area. This study aims to provide a roadmap for future development along the Rio Salado at South Mountain Village in a sustainable and equitable way.

Date Created
2018-05-14
Agent