Building Better Engagement - An Approach To Improving Student Engagement in Higher Education Environments

137154-Thumbnail Image.png
Description
Many student engagement studies take a holistic view of the student experience at a university setting, which includes factors both inside and outside of the classroom. However, most engagement improvements focus on activities outside of the classroom. Some research regarding

Many student engagement studies take a holistic view of the student experience at a university setting, which includes factors both inside and outside of the classroom. However, most engagement improvements focus on activities outside of the classroom. Some research regarding improving teaching styles and activities shows an impact on engagement, but little research has investigated the impact of the built environment on student engagement. This paper explores the definition of student engagement, what environmental variables affect building occupant performance, and specifically addresses how environmental variables can impact student engagement. The authors provide a review of literature discussing these variables as well as propose a method for quantifying the impact of the built environment on students based on results of a preliminary study. Evidence of a relationship between human comfort and student engagement can provide an argument for how thoughtful building designs can improve student success and engineering education. It can further extend to industry settings where green building design can lower operating costs and improve worker satisfaction and productivity.
Date Created
2014-05
Agent

Computational sustainability assessment of algal biofuels and bioproducts for commercial applications

154459-Thumbnail Image.png
Description
To date, the production of algal biofuels is not economically sustainable due to the cost of production and the low cost of conventional fuels. As a result, interest has been shifting to high value products in the algae community to

To date, the production of algal biofuels is not economically sustainable due to the cost of production and the low cost of conventional fuels. As a result, interest has been shifting to high value products in the algae community to make up for the low economic potential of algal biofuels. The economic potential of high-value products does not however, eliminate the need to consider the environmental impacts. The majority of the environmental impacts associated with algal biofuels overlap with algal bioproducts in general (high-energy dewatering) due to the similarities in their production pathways. Selecting appropriate product sets is a critical step in the commercialization of algal biorefineries.

This thesis evaluates the potential of algae multiproduct biorefineries for the production of fuel and high-value products to be economically self-sufficient and still contribute to climate change mandates laid out by the government via the Energy Independence and Security Act (EISA) of 2007. This research demonstrates:

1) The environmental impacts of algal omega-3 fatty acid production can be lower than conventional omega-3 fatty acid production, depending on the dewatering strategy.

2) The production of high-value products can support biofuels with both products being sold at prices comparable to 2016 prices.

3) There is a tradeoff between revenue and fuel production

4) There is a tradeoff between the net energy ratio of the algal biorefinery and the economic viability due to the lower fuel production in a multi-product model that produces high-value products and diesel vs. the lower economic potential from a multi-product model that just produces diesel.

This work represents the first efforts to use life cycle assessment and techno-economic analysis to assess the economic and environmental sustainability of an existing pilot-scale biorefinery tasked with the production of high-value products and biofuels. This thesis also identifies improvements for multiproduct algal biorefineries that will achieve environmentally sustainable biofuel and products while maintaining economic viability.
Date Created
2016
Agent

Examining the impacts of switchgrass derived biofuels on U.S. biofuel policy and the potential environmental ethical dilemmas

152935-Thumbnail Image.png
Description
Overall, biofuels play a significant role in future energy sourcing and deserve thorough researching and examining for their best use in achieving sustainable goals. National and state policies are supporting biofuel production as a sustainable option without a holistic view

Overall, biofuels play a significant role in future energy sourcing and deserve thorough researching and examining for their best use in achieving sustainable goals. National and state policies are supporting biofuel production as a sustainable option without a holistic view of total impacts. The analysis from this research connects to policies based on life cycle sustainability to identify other environmental impacts beyond those specified in the policy as well as ethical issues that are a concern. A Life cycle assessment (LCA) of switchgrass agriculture indicates it will be challenging to meet U.S. Renewable Fuel Standards with only switchgrass cellulosic ethanol, yet may be used for California's Low Carbon Fuel Standard. Ethical dilemmas in food supply, land conservation, and water use can be connected to biofuel production and will require evaluation as policies are created. The discussions around these ethical dilemmas should be had throughout the process of biofuel production and policy making. Earth system engineering management principles can help start the discussions and allow anthropocentric and biocentric viewpoints to be heard.
Date Created
2014
Agent