An analytical approach to lean six sigma deployment strategies: project identification and prioritization

150466-Thumbnail Image.png
Description
The ever-changing economic landscape has forced many companies to re-examine their supply chains. Global resourcing and outsourcing of processes has been a strategy many organizations have adopted to reduce cost and to increase their global footprint. This has, however, resulted

The ever-changing economic landscape has forced many companies to re-examine their supply chains. Global resourcing and outsourcing of processes has been a strategy many organizations have adopted to reduce cost and to increase their global footprint. This has, however, resulted in increased process complexity and reduced customer satisfaction. In order to meet and exceed customer expectations, many companies are forced to improve quality and on-time delivery, and have looked towards Lean Six Sigma as an approach to enable process improvement. The Lean Six Sigma literature is rich in deployment strategies; however, there is a general lack of a mathematical approach to deploy Lean Six Sigma in a global enterprise. This includes both project identification and prioritization. The research presented here is two-fold. Firstly, a process characterization framework is presented to evaluate processes based on eight characteristics. An unsupervised learning technique, using clustering algorithms, is then utilized to group processes that are Lean Six Sigma conducive. The approach helps Lean Six Sigma deployment champions to identify key areas within the business to focus a Lean Six Sigma deployment. A case study is presented and 33% of the processes were found to be Lean Six Sigma conducive. Secondly, having identified parts of the business that are lean Six Sigma conducive, the next steps are to formulate and prioritize a portfolio of projects. Very often the deployment champion is faced with the decision of selecting a portfolio of Lean Six Sigma projects that meet multiple objectives which could include: maximizing productivity, customer satisfaction or return on investment, while meeting certain budgetary constraints. A multi-period 0-1 knapsack problem is presented that maximizes the expected net savings of the Lean Six Sigma portfolio over the life cycle of the deployment. Finally, a case study is presented that demonstrates the application of the model in a large multinational company. Traditionally, Lean Six Sigma found its roots in manufacturing. The research presented in this dissertation also emphasizes the applicability of the methodology to the non-manufacturing space. Additionally, a comparison is conducted between manufacturing and non-manufacturing processes to highlight the challenges in deploying the methodology in both spaces.
Date Created
2011
Agent

Deregulated real-time pricing for the promotion of distributed renewables

149997-Thumbnail Image.png
Description
This thesis pursues a method to deregulate the electric distribution system and provide support to distributed renewable generation. A locational marginal price is used to determine prices across a distribution network in real-time. The real-time pricing may provide benefits such

This thesis pursues a method to deregulate the electric distribution system and provide support to distributed renewable generation. A locational marginal price is used to determine prices across a distribution network in real-time. The real-time pricing may provide benefits such as a reduced electricity bill, decreased peak demand, and lower emissions. This distribution locational marginal price (D-LMP) determines the cost of electricity at each node in the electrical network. The D-LMP is comprised of the cost of energy, cost of losses, and a renewable energy premium. The renewable premium is an adjustable function to compensate `green' distributed generation. A D-LMP is derived and formulated from the PJM model, as well as several alternative formulations. The logistics and infrastructure an implementation is briefly discussed. This study also takes advantage of the D-LMP real-time pricing to implement distributed storage technology. A storage schedule optimization is developed using linear programming. Day-ahead LMPs and historical load data are used to determine a predictive optimization. A test bed is created to represent a practical electric distribution system. Historical load, solar, and LMP data are used in the test bed to create a realistic environment. A power flow and tabulation of the D-LMPs was conducted for twelve test cases. The test cases included various penetrations of solar photovoltaics (PV), system networking, and the inclusion of storage technology. Tables of the D-LMPs and network voltages are presented in this work. The final costs are summed and the basic economics are examined. The use of a D-LMP can lower costs across a system when advanced technologies are used. Storage improves system costs, decreases losses, improves system load factor, and bolsters voltage. Solar energy provides many of these same attributes at lower penetrations, but high penetrations have a detrimental effect on the system. System networking also increases these positive effects. The D-LMP has a positive impact on residential customer cost, while greatly increasing the costs for the industrial sector. The D-LMP appears to have many positive impacts on the distribution system but proper cost allocation needs further development.
Date Created
2011
Agent