Network maintenance and capacity management with applications in transportation

155983-Thumbnail Image.png
Description
This research develops heuristics to manage both mandatory and optional network capacity reductions to better serve the network flows. The main application discussed relates to transportation networks, and flow cost relates to travel cost of users of the network. Temporary

This research develops heuristics to manage both mandatory and optional network capacity reductions to better serve the network flows. The main application discussed relates to transportation networks, and flow cost relates to travel cost of users of the network. Temporary mandatory capacity reductions are required by maintenance activities. The objective of managing maintenance activities and the attendant temporary network capacity reductions is to schedule the required segment closures so that all maintenance work can be completed on time, and the total flow cost over the maintenance period is minimized for different types of flows. The goal of optional network capacity reduction is to selectively reduce the capacity of some links to improve the overall efficiency of user-optimized flows, where each traveler takes the route that minimizes the traveler’s trip cost. In this dissertation, both managing mandatory and optional network capacity reductions are addressed with the consideration of network-wide flow diversions due to changed link capacities.

This research first investigates the maintenance scheduling in transportation networks with service vehicles (e.g., truck fleets and passenger transport fleets), where these vehicles are assumed to take the system-optimized routes that minimize the total travel cost of the fleet. This problem is solved with the randomized fixed-and-optimize heuristic developed. This research also investigates the maintenance scheduling in networks with multi-modal traffic that consists of (1) regular human-driven cars with user-optimized routing and (2) self-driving vehicles with system-optimized routing. An iterative mixed flow assignment algorithm is developed to obtain the multi-modal traffic assignment resulting from a maintenance schedule. The genetic algorithm with multi-point crossover is applied to obtain a good schedule.

Based on the Braess’ paradox that removing some links may alleviate the congestion of user-optimized flows, this research generalizes the Braess’ paradox to reduce the capacity of selected links to improve the efficiency of the resultant user-optimized flows. A heuristic is developed to identify links to reduce capacity, and the corresponding capacity reduction amounts, to get more efficient total flows. Experiments on real networks demonstrate the generalized Braess’ paradox exists in reality, and the heuristic developed solves real-world test cases even when commercial solvers fail.
Date Created
2017
Agent

An optimization model for emergency response crew location within a theme park

134111-Thumbnail Image.png
Description
Every year, millions of guests visit theme parks internationally. Within that massive population, accidents and emergencies are bound to occur. Choosing the correct location for emergency responders inside of the park could mean the difference between life and death. In

Every year, millions of guests visit theme parks internationally. Within that massive population, accidents and emergencies are bound to occur. Choosing the correct location for emergency responders inside of the park could mean the difference between life and death. In an effort to provide the utmost safety for the guests of a park, it is important to make the best decision when selecting the location for emergency response crews. A theme park is different from a regular residential or commercial area because the crowds and shows block certain routes, and they change throughout the day. We propose an optimization model that selects staging locations for emergency medical responders in a theme park to maximize the number of responses that can occur within a pre-specified time. The staging areas are selected from a candidate set of restricted access locations where the responders can store their equipment. Our solution approach considers all routes to access any park location, including areas that are unavailable to a regular guest. Theme parks are a highly dynamic environment. Because special events occurring in the park at certain hours (e.g., parades) might impact the responders' travel times, our model's decisions also include the time dimension in the location and re-location of the responders. Our solution provides the optimal location of the responders for each time partition, including backup responders. When an optimal solution is found, the model is also designed to consider alternate optimal solutions that provide a more balanced workload for the crews.
Date Created
2017-12
Agent