A Comprehensive Petrochemical Vulnerability Index for Marine Fishes in the Gulf of Mexico
Description
The Gulf of Mexico (or “Gulf”) is of critical significance to the oil and gas industries’ offshore production, but the potential for accidental petrochemical influx into the Gulf due to such processes is high; two of the largest marine oil spills in history, Pemex's Ixtoc I spill (1979) and British Petroleum's (BP) Deepwater Horizon (2010), have occurred in the region. However, the Gulf is also of critical significance to thousands of unique species, many of which may be irreparably harmed by accidental petrochemical exposure. To better manage the conservation and recovery of marine species in the Gulf ecosystem, a Petrochemical Vulnerability Index was developed to determine the potential impact of a petrochemical influx on Gulf marine fishes, therein providing an objective framework with which to determine the best immediate and long term management strategies for resource managers and decision-makers. The resulting Petrochemical Vulnerability Index (PVI) was developed and applied to all bony fishes and shark/ray species in the Gulf of Mexico (1,670 spp), based on a theoretical petrochemical vulnerability framework developed by peer review. The PVI for fishes embodies three key facets of species vulnerability: likelihood of exposure, individual sensitivity, and population resilience, and comprised of 11 total metrics (Distribution, Longevity, Mobility, Habitat, Pre-Adult Stage Length, Pre-Adult Exposure; Increased Adult Sensitivity Due to UV Light, Increased Pre-Adult Sensitivity Due to UV Light; and Abundance, Reproductive Turnover Rate, Diet/Habitat Specialization). The resulting PVI can be used to guide attention to the species potentially most in need of immediate attention in the event of an oil spill or other petrochemical influx, as well as those species that may require intensive long-term recovery. The scored relative vulnerability rankings can also provide information on species that ought to be the focus of future toxicological research, by indicating which species lack toxicological data, and may potentially experience significant impacts.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2020
Agent
- Author (aut): Woodyard, Megan
- Thesis advisor (ths): Polidoro, Beth
- Thesis advisor (ths): Saul, Steven
- Committee member: Matson, Cole
- Publisher (pbl): Arizona State University