A Comprehensive Petrochemical Vulnerability Index for Marine Fishes in the Gulf of Mexico

158321-Thumbnail Image.png
Description
The Gulf of Mexico (or “Gulf”) is of critical significance to the oil and gas industries’ offshore production, but the potential for accidental petrochemical influx into the Gulf due to such processes is high; two of the largest marine oil

The Gulf of Mexico (or “Gulf”) is of critical significance to the oil and gas industries’ offshore production, but the potential for accidental petrochemical influx into the Gulf due to such processes is high; two of the largest marine oil spills in history, Pemex's Ixtoc I spill (1979) and British Petroleum's (BP) Deepwater Horizon (2010), have occurred in the region. However, the Gulf is also of critical significance to thousands of unique species, many of which may be irreparably harmed by accidental petrochemical exposure. To better manage the conservation and recovery of marine species in the Gulf ecosystem, a Petrochemical Vulnerability Index was developed to determine the potential impact of a petrochemical influx on Gulf marine fishes, therein providing an objective framework with which to determine the best immediate and long term management strategies for resource managers and decision-makers. The resulting Petrochemical Vulnerability Index (PVI) was developed and applied to all bony fishes and shark/ray species in the Gulf of Mexico (1,670 spp), based on a theoretical petrochemical vulnerability framework developed by peer review. The PVI for fishes embodies three key facets of species vulnerability: likelihood of exposure, individual sensitivity, and population resilience, and comprised of 11 total metrics (Distribution, Longevity, Mobility, Habitat, Pre-Adult Stage Length, Pre-Adult Exposure; Increased Adult Sensitivity Due to UV Light, Increased Pre-Adult Sensitivity Due to UV Light; and Abundance, Reproductive Turnover Rate, Diet/Habitat Specialization). The resulting PVI can be used to guide attention to the species potentially most in need of immediate attention in the event of an oil spill or other petrochemical influx, as well as those species that may require intensive long-term recovery. The scored relative vulnerability rankings can also provide information on species that ought to be the focus of future toxicological research, by indicating which species lack toxicological data, and may potentially experience significant impacts.
Date Created
2020
Agent

Classication for Conservation: A Random Forest Model to Predict Threatened Marine Species

133732-Thumbnail Image.png
Description
As threats to Earth's biodiversity continue to evolve, an effective methodology to predict such threats is crucial to ensure the survival of living species. Organizations like the International Union for Conservation of Nature (IUCN) monitor the Earth's environmental networks to

As threats to Earth's biodiversity continue to evolve, an effective methodology to predict such threats is crucial to ensure the survival of living species. Organizations like the International Union for Conservation of Nature (IUCN) monitor the Earth's environmental networks to preserve the sanctity of terrestrial and marine life. The IUCN Red List of Threatened Species informs the conservation activities of governments as a world standard of species' risks of extinction. However, the IUCN's current methodology is, in some ways, inefficient given the immense volume of Earth's species and the laboriousness of its species' risk classification process. IUCN assessors can take years to classify a species' extinction risk, even as that species continues to decline. Therefore, to supplement the IUCN's classification process and thus bolster conservationist efforts for threatened species, a Random Forest model was constructed, trained on a group of fish species previously classified by the IUCN Red List. This Random Forest model both validates the IUCN Red List's classification method and offers a highly efficient, supplemental classification method for species' extinction risk. In addition, this Random Forest model is applicable to species with deficient data, which the IUCN Red List is otherwise unable to classify, thus engendering conservationist efforts for previously obscure species. Although this Random Forest model is built specifically for the trained fish species (Sparidae), the methodology can and should be extended to additional species.
Date Created
2018-05
Agent