Investigating the Relationship between Neighborhood Socioeconomic Status and Proximity to Public Services

133499-Thumbnail Image.png
Description
With growing levels of income inequality in the United States, it remains as important as ever to ensure indispensable public services are readily available to all members of society. This paper investigates four forms of public services (schools, libraries, fire

With growing levels of income inequality in the United States, it remains as important as ever to ensure indispensable public services are readily available to all members of society. This paper investigates four forms of public services (schools, libraries, fire stations, and police stations), first by researching the background of these services and their relation to poverty, and then by conducting geospatial and regression analysis. The author uses Esri's ArcGIS Pro software to quantify the proximity to public services from urban American neighborhoods (census tracts in the cities of Phoenix and Chicago). Afterwards, the measures indicating proximity are compared to the socioeconomic statuses of neighborhoods using regression analysis. The results indicate that pure proximity to these four services is not necessarily correlated to socioeconomic status. While the paper does uncover some correlations, such as a relationship between school quality and socioeconomic status, the majority of the findings negate the author's hypothesis and show that, in Phoenix and Chicago, there is not much discrepancy between neighborhoods and the extent to which they are able to access vital government-funded services.
Date Created
2018-05
Agent

Predicting the Outcome of UFC Fights Using Machine Learning Models

133684-Thumbnail Image.png
Description
Abstract: The Ultimate Fighting Championship or UFC as it is commonly known, was founded in 1993 and has quickly built itself into the world's foremost authority on all things MMA (mixed martial arts) related. With pay-per-view and cable television deals

Abstract: The Ultimate Fighting Championship or UFC as it is commonly known, was founded in 1993 and has quickly built itself into the world's foremost authority on all things MMA (mixed martial arts) related. With pay-per-view and cable television deals in hand, the UFC has become a huge competitor in the sports market, rivaling the popularity of boxing for almost a decade. As with most other sports, the UFC has seen an influx of various analytics and data science over the past five to seven years. We see this revolution in football with the broadcast first down markers, basketball with tracking player movement, and baseball with locating pitches for strikes and balls, and now the UFC has partnered with statistics company Fightmetric, to provide in-depth statistical analysis of its fights. ESPN has their win probability metrics, and statistical predictive modeling has begun to spread throughout sports. All these stats were made to showcase the information about a fighter that one wouldn't typically know, giving insight into how the fight might go. But, can these fights be predicted? Based off of the research of prior individuals and combining the thought processes of relevant research into other sports leagues, I sought to use the arsenal of statistical analyses done by Fightmetric, along with the official UFC fighter database to answer the question of whether UFC fights could be predicted. Specifically, by using only data that would be known about a fighter prior to stepping into the cage, could I predict with any degree of certainty who was going to win the fight?
Date Created
2018-05
Agent