Investigation of the Electrical Resistivity of a Perchlorate Oxidizer Based Electric Propellant Formulation

157033-Thumbnail Image.png
Description
In recent years, a new type of ionic salt based solid propellant, considered inert until the application of an electric current induces an electro-chemical reaction, has been under investigation due to its broad range of possible uses. However, while many

In recent years, a new type of ionic salt based solid propellant, considered inert until the application of an electric current induces an electro-chemical reaction, has been under investigation due to its broad range of possible uses. However, while many electric propellant formulations and applications have been explored over the years, a fundamental understanding of the operational mechanisms of this propellant is necessary in order to move forward with development and implementation of this technology. It has been suggested that the metallic additive included in the formulation studied during this investigation may be playing an additional, currently unknown role in the operation and performance of the propellant. This study was designed to examine variations of an electric propellant formulation with the purpose of investigating propellant bulk volume electrical resistivity in order to attempt to determine information regarding the fundamental science behind the operation of this material. Within a set of fractional factorial experiments, variations of the propellant material made with tungsten, copper, carbon black, and no additive were manufactured using three different particle size ranges and three different volume percentage particle loadings. Each of these formulations (a total of 21 samples and 189 specimens) were tested for quantitative electrical resistivity values at three different pulse generator input voltage values. The data gathered from these experiments suggests that this electric propellant formulation’s resistivity value does change based upon the included additive. The resulting data has also revealed a parabolic response behavior noticeable in the 2D and 3D additive loading percentage versus additive particle size visualizations, the lowest point of which, occurring at an approximately 2.3% additive loading percentage value, could be indicative of the effects of the percolation phenomena on this material. Finally, the investigation results have been loosely correlated to power consumption testing results from previous work that may indicate that it is possible to relate propellant electrical resistivity and operating requirements. Throughout this study, however, it is obvious based on the data gathered that more information is required to be certain of these conclusions and in order to fully understand how this technology can be controlled for future use.
Date Created
2019
Agent

Design of an Electrically Driven Centrifugal Pump for Hybrid Sounding Rocket Applications

133366-Thumbnail Image.png
Description
The objective of this project was to design an electrically driven centrifugal pump for the Daedalus Astronautics @ASU hybrid rocket engine (HRE). The pump design was purposefully simplified due to time, fabrication, calculation, and capability constraints, which resulted in a

The objective of this project was to design an electrically driven centrifugal pump for the Daedalus Astronautics @ASU hybrid rocket engine (HRE). The pump design was purposefully simplified due to time, fabrication, calculation, and capability constraints, which resulted in a lower fidelity design, with the option to be improved later. The impeller, shroud, volute, shaft, motor, and ESC were the main focuses of the pump assembly, but the seals, bearings, lubrication methods, and flow path connections were considered as elements which would require future attention. The resulting pump design is intended to be used on the Daedalus Astronautics HRE test cart for design verification. In the future, trade studies and more detailed analyses should and will be performed before this pump is integrated into the Daedalus Astronautics flight-ready HRE.
Date Created
2018-05
Agent

Analysis of FDM-Enabled Thermoplastics as Hybrid Rocket Fuel

134604-Thumbnail Image.png
Description
In this analysis, materials capable of being 3D printed such as acrylonitrile-butadiene styrene (ABS), polyethylene terephthalate-glycol (PETG), and polylactic acid (PLA) were analyzed mathematically to determine their potential application as a fuel source for a hybrid rocket engine currently being

In this analysis, materials capable of being 3D printed such as acrylonitrile-butadiene styrene (ABS), polyethylene terephthalate-glycol (PETG), and polylactic acid (PLA) were analyzed mathematically to determine their potential application as a fuel source for a hybrid rocket engine currently being developed by Daedalus Astronautics. By developing a 3D printed fuel option, new fuel grain geometries can be manufactured and tested that have the potential to greatly improve regression and flow characteristics of hybrid rockets. In addition, 3D printed grains have been shown to greatly reduce manufacturing time while improving grain-to-grain consistency. In the end, it was found that ABS, although the most difficult material to work with, would likely provide the best results as compared to an HTPB baseline. This is because after conducting a heat conservation analysis similar to that employed by NASA's chemical equilibrium with applications code (CEA), ABS was shown to operate at similarly high levels of specific impulse at approximately the same oxidizer-to-fuel ratio, meaning the current Daedalus test setup for HTPB would be applicable to ABS. In addition, PLA was found to require a far lower oxidizer-to-fuel ratio to achieve peak specific impulse than any of the other fuels analyzed leading to the conclusion that in a flight-ready engine it would likely require less oxidizer and pressurization mass, and therefore, less overall system mass, to achieve thrust levels similar to ABS and HTPB. By improving the thrust-to-weight ratio in this way a more efficient engine could be developed. Following these results, future works will include the hot-fire testing of the four fuel options to verify the analysis method used. Additionally, the ground work has been set for future analysis and development of complex fuel port geometries which have been shown to further improve flight characteristics.
Date Created
2017-05
Agent