Simulating Atmosphere and the TolTEC Detector Array for Data Reduction Pipeline Evaluation

157904-Thumbnail Image.png
Description
TolTEC is a three-color millimeter wavelength camera currently being developed for the Large Millimeter Telescope (LMT) in Mexico. Synthesizing data from previous astronomy cameras as well as knowledge of atmospheric physics, I have developed a simulation of the data collection

TolTEC is a three-color millimeter wavelength camera currently being developed for the Large Millimeter Telescope (LMT) in Mexico. Synthesizing data from previous astronomy cameras as well as knowledge of atmospheric physics, I have developed a simulation of the data collection of TolTEC on the LMT. The simulation was built off smaller sub-projects that informed the development with an understanding of the detector array, the time streams for astronomical mapping, and the science behind Lumped Element Kinetic Inductance Detectors (LEKIDs). Additionally, key aspects of software development processes were integrated into the scientific development process to streamline collaboration across multiple universities and plan for integration on the servers at LMT. The work I have done benefits the data reduction pipeline team by enabling them to efficiently develop their software and test it on simulated data.
Date Created
2019
Agent

A Neural Network Model for a Tutoring Companion Supporting Students in a Programming with Java Course

157482-Thumbnail Image.png
Description
Feedback represents a vital component of the learning process and is especially important for Computer Science students. With class sizes that are often large, it can be challenging to provide individualized feedback to students. Consistent, constructive, supportive feedback through a

Feedback represents a vital component of the learning process and is especially important for Computer Science students. With class sizes that are often large, it can be challenging to provide individualized feedback to students. Consistent, constructive, supportive feedback through a tutoring companion can scaffold the learning process for students.

This work contributes to the construction of a tutoring companion designed to provide this feedback to students. It aims to bridge the gap between the messages the compiler delivers, and the support required for a novice student to understand the problem and fix their code. Particularly, it provides support for students learning about recursion in a beginning university Java programming course. Besides also providing affective support, a tutoring companion could be more effective when it is embedded into the environment that the student is already using, instead of an additional tool for the student to learn. The proposed Tutoring Companion is embedded into the Eclipse Integrated Development Environment (IDE).

This thesis focuses on the reasoning model for the Tutoring Companion and is developed using the techniques of a neural network. While a student uses the IDE, the Tutoring Companion collects 16 data points, including the presence of certain key words, cyclomatic complexity, and error messages from the compiler, every time it detects an event, such as a run attempt, debug attempt, or a request for help, in the IDE. This data is used as inputs to the neural network. The neural network produces a correlating single output code for the feedback to be provided to the student, which is displayed in the IDE.

The effectiveness of the approach is examined among 38 Computer Science students who solve a programming assignment while the Tutoring Companion assists them. Data is collected from these interactions, including all inputs and outputs for the neural network, and students are surveyed regarding their experience. Results suggest that students feel supported while working with the Companion and promising potential for using a neural network with an embedded companion in the future. Challenges in developing an embedded companion are discussed, as well as opportunities for future work.
Date Created
2019
Agent

Ensemble Learning on Deep Neural Networks for Image Caption Generation

157371-Thumbnail Image.png
Description
Capturing the information in an image into a natural language sentence is

considered a difficult problem to be solved by computers. Image captioning involves not just detecting objects from images but understanding the interactions between the objects to be translated into

Capturing the information in an image into a natural language sentence is

considered a difficult problem to be solved by computers. Image captioning involves not just detecting objects from images but understanding the interactions between the objects to be translated into relevant captions. So, expertise in the fields of computer vision paired with natural language processing are supposed to be crucial for this purpose. The sequence to sequence modelling strategy of deep neural networks is the traditional approach to generate a sequential list of words which are combined to represent the image. But these models suffer from the problem of high variance by not being able to generalize well on the training data.

The main focus of this thesis is to reduce the variance factor which will help in generating better captions. To achieve this, Ensemble Learning techniques have been explored, which have the reputation of solving the high variance problem that occurs in machine learning algorithms. Three different ensemble techniques namely, k-fold ensemble, bootstrap aggregation ensemble and boosting ensemble have been evaluated in this thesis. For each of these techniques, three output combination approaches have been analyzed. Extensive experiments have been conducted on the Flickr8k dataset which has a collection of 8000 images and 5 different captions for every image. The bleu score performance metric, which is considered to be the standard for evaluating natural language processing (NLP) problems, is used to evaluate the predictions. Based on this metric, the analysis shows that ensemble learning performs significantly better and generates more meaningful captions compared to any of the individual models used.
Date Created
2019
Agent

UVLabel A Tool for the Future of Interferometry Analysis

157365-Thumbnail Image.png
Description
UVLabel was created to enable radio astronomers to view and annotate their own data such that they could then expand their future research paths. It simplifies their data rendering process by providing a simple user interface to better access sections

UVLabel was created to enable radio astronomers to view and annotate their own data such that they could then expand their future research paths. It simplifies their data rendering process by providing a simple user interface to better access sections of their data. Furthermore, it provides an interface to track trends in their data through a labelling feature.

The tool was developed following the incremental development process in order to quickly create a functional and testable tool. The incremental process also allowed for feedback from radio astronomers to help guide the project's development.

UVLabel provides both a functional product, and a modifiable and scalable code base for radio astronomer developers. This enables astronomers studying various astronomical interferometric data labelling capabilities. The tool can then be used to improve their filtering methods, pursue machine learning solutions, and discover new trends. Finally, UVLabel will be open source to put customization, scalability, and adaptability in the hands of these researchers.
Date Created
2019
Agent

PRACTICAL APPLICATION OF CONVOLUTIONAL NEURAL NETWORKS FOR SKIN LESION CLASSIFICATION

132708-Thumbnail Image.png
Description
In this paper, I explore practical applications of neural networks for automated skin lesion identification. The visual characteristics are of primary importance in the recognition of skin diseases, hence, the development of deep neural network models proven capable of classifying

In this paper, I explore practical applications of neural networks for automated skin lesion identification. The visual characteristics are of primary importance in the recognition of skin diseases, hence, the development of deep neural network models proven capable of classifying skin lesions can potentially change the face of modern medicine by extending the availability and lowering the cost of diagnostic care. Previous work has demonstrated the effectiveness of convolutional neural networks in image classification in general, with even higher accuracy achievable by data augmentation techniques, such as cropping, rotating, and flipping input images, along with more advanced computationally intensive approaches. In this research, I provide an overview of Convolutional Neural Networks (CNN) and CNN implementation with TensorFlow and Keras API in context of image recognition and classification. I also experiment with custom convolutional neural network model architecture trained using HAM10000 dataset. The dataset used for the case study is obtained from Harvard Dataverse and is maintained by Medical University of Vienna. The HAM10000 dataset is a large collection of multi-source dermatoscopic images of common pigmented skin lesions and is available for academic research under Creative Commons Attribution-Noncommercial 4.0 International Public License. With over ten thousand dermatoscopic images of seven classes of benign and malignant skin lesions, the dataset is substantial for academic machine learning purposes for multiclass image classification. I discuss the successes and shortcomings of the model in respect to its application to the dataset.
Date Created
2019-05
Agent

All Purpose Textual Data Information Extraction, Visualization and Querying

156689-Thumbnail Image.png
Description
Since the advent of the internet and even more after social media platforms, the explosive growth of textual data and its availability has made analysis a tedious task. Information extraction systems are available but are generally too specific and often

Since the advent of the internet and even more after social media platforms, the explosive growth of textual data and its availability has made analysis a tedious task. Information extraction systems are available but are generally too specific and often only extract certain kinds of information they deem necessary and extraction worthy. Using data visualization theory and fast, interactive querying methods, leaving out information might not really be necessary. This thesis explores textual data visualization techniques, intuitive querying, and a novel approach to all-purpose textual information extraction to encode large text corpus to improve human understanding of the information present in textual data.

This thesis presents a modified traversal algorithm on dependency parse output of text to extract all subject predicate object pairs from text while ensuring that no information is missed out. To support full scale, all-purpose information extraction from large text corpuses, a data preprocessing pipeline is recommended to be used before the extraction is run. The output format is designed specifically to fit on a node-edge-node model and form the building blocks of a network which makes understanding of the text and querying of information from corpus quick and intuitive. It attempts to reduce reading time and enhancing understanding of the text using interactive graph and timeline.
Date Created
2018
Agent

Evaluation of instructional module development system

156614-Thumbnail Image.png
Description
Academia is not what it used to be. In today’s fast-paced world, requirements

are constantly changing, and adapting to these changes in an academic curriculum

can be challenging. Given a specific aspect of a domain, there can be various levels of

proficiency that

Academia is not what it used to be. In today’s fast-paced world, requirements

are constantly changing, and adapting to these changes in an academic curriculum

can be challenging. Given a specific aspect of a domain, there can be various levels of

proficiency that can be achieved by the students. Considering the wide array of needs,

diverse groups need customized course curriculum. The need for having an archetype

to design a course focusing on the outcomes paved the way for Outcome-based

Education (OBE). OBE focuses on the outcomes as opposed to the traditional way of

following a process [23]. According to D. Clark, the major reason for the creation of

Bloom’s taxonomy was not only to stimulate and inspire a higher quality of thinking

in academia – incorporating not just the basic fact-learning and application, but also

to evaluate and analyze on the facts and its applications [7]. Instructional Module

Development System (IMODS) is the culmination of both these models – Bloom’s

Taxonomy and OBE. It is an open-source web-based software that has been

developed on the principles of OBE and Bloom’s Taxonomy. It guides an instructor,

step-by-step, through an outcomes-based process as they define the learning

objectives, the content to be covered and develop an instruction and assessment plan.

The tool also provides the user with a repository of techniques based on the choices

made by them regarding the level of learning while defining the objectives. This helps

in maintaining alignment among all the components of the course design. The tool

also generates documentation to support the course design and provide feedback

when the course is lacking in certain aspects.

It is not just enough to come up with a model that theoretically facilitates

effective result-oriented course design. There should be facts, experiments and proof

that any model succeeds in achieving what it aims to achieve. And thus, there are two

research objectives of this thesis: (i) design a feature for course design feedback and

evaluate its effectiveness; (ii) evaluate the usefulness of a tool like IMODS on various

aspects – (a) the effectiveness of the tool in educating instructors on OBE; (b) the

effectiveness of the tool in providing appropriate and efficient pedagogy and

assessment techniques; (c) the effectiveness of the tool in building the learning

objectives; (d) effectiveness of the tool in document generation; (e) Usability of the

tool; (f) the effectiveness of OBE on course design and expected student outcomes.

The thesis presents a detailed algorithm for course design feedback, its pseudocode, a

description and proof of the correctness of the feature, methods used for evaluation

of the tool, experiments for evaluation and analysis of the obtained results.
Date Created
2018
Agent

Control for Resonant Microbeam Vibrotactile Haptic Displays

Description
The world’s population is currently 9% visually impaired. Medical sciences do not have a biological fix that can cure this visual impairment. Visually impaired people are currently being assisted with biological fixes or assistive devices. The current assistive devices are

The world’s population is currently 9% visually impaired. Medical sciences do not have a biological fix that can cure this visual impairment. Visually impaired people are currently being assisted with biological fixes or assistive devices. The current assistive devices are limited in size as well as resolution. This thesis presents the development and experimental validation of a control system for a new vibrotactile haptic display that is currently in development. In order to allow the vibrotactile haptic display to be used to represent motion, the control system must be able to change the image displayed at a rate of at least 30 frames/second. In order to achieve this, this thesis introduces and investigates the use of three improvements: threading, change filtering, and wave libraries. Through these methods, it is determined that an average of 40 frames/second can be achieved.
Date Created
2018
Agent

Graph Search as a Feature in Imperative/Procedural Programming Languages

156331-Thumbnail Image.png
Description
Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their

Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their target graph, however they struggle to implement a correct, and efficient, search over that graph.

To facilitate rapid, correct, efficient, and intuitive development of graph based solutions we propose a new programming language construct - the search statement. Given a supra-root node, a procedure which determines the children of a given parent node, and optional definitions of the fail-fast acceptance or rejection of a solution, the search statement can conduct a search over any graph or network. Structurally, this statement is modelled after the common switch statement and is put into a largely imperative/procedural context to allow for immediate and intuitive development by most programmers. The Go programming language has been used as a foundation and proof-of-concept of the search statement. A Go compiler is provided which implements this construct.
Date Created
2018
Agent

ReL GoalD (Reinforcement Learning for Goal Dependencies)

133880-Thumbnail Image.png
Description
In this project, the use of deep neural networks for the process of selecting actions to execute within an environment to achieve a goal is explored. Scenarios like this are common in crafting based games such as Terraria or Minecraft.

In this project, the use of deep neural networks for the process of selecting actions to execute within an environment to achieve a goal is explored. Scenarios like this are common in crafting based games such as Terraria or Minecraft. Goals in these environments have recursive sub-goal dependencies which form a dependency tree. An agent operating within these environments have access to low amounts of data about the environment before interacting with it, so it is crucial that this agent is able to effectively utilize a tree of dependencies and its environmental surroundings to make judgements about which sub-goals are most efficient to pursue at any point in time. A successful agent aims to minimizes cost when completing a given goal. A deep neural network in combination with Q-learning techniques was employed to act as the agent in this environment. This agent consistently performed better than agents using alternate models (models that used dependency tree heuristics or human-like approaches to make sub-goal oriented choices), with an average performance advantage of 33.86% (with a standard deviation of 14.69%) over the best alternate agent. This shows that machine learning techniques can be consistently employed to make goal-oriented choices within an environment with recursive sub-goal dependencies and low amounts of pre-known information.
Date Created
2018-05
Agent