The Role of Knowledge Structures & Motivation on Problem Solving

161380-Thumbnail Image.png
Description
Individuals encounter problems daily wherein varying numbers of constraints require delimitation of memory to target goal-satisfying information. Multiply-constrained problems, such as compound remote associates, are commonly used to study this type of problem solving. Since their development, multiply-constrained problems have

Individuals encounter problems daily wherein varying numbers of constraints require delimitation of memory to target goal-satisfying information. Multiply-constrained problems, such as compound remote associates, are commonly used to study this type of problem solving. Since their development, multiply-constrained problems have been theoretically and empirically related to creative thinking, analytical problem solving, insight problem solving, intelligence, and a multitude of other cognitive abilities. Critically, in order to correctly solve a multiply-constrained problem the solver must have the solution available in memory and be able to target and access to that information. Experiment 1 determined that the cue – target relationship affects the likelihood that a problem is solved. Moreover, Experiment 2 identified that the association between cues and targets predicted inter- & intra-individual differences in multiply-constrained problem solving. Lastly, Experiment 3 found monetary incentives failed to improve problem solving performance likely due to knowledge serving as a limiting factor on performance. Additionally, problem solvers were shown to be able to reliably assess the likelihood they would solve a problem. Taken together all three studies demonstrated the importance of knowledge & knowledge structures on problem solving performance.
Date Created
2021
Agent

Analytical and Insight Problem Solving Analyzed through EEGLAB

132664-Thumbnail Image.png
Description
Human potential is characterized by our ability to think flexibly and develop novel solutions to problems. In cognitive neuroscience, problem solving is studied using various tasks. For example, IQ can be tested using the RAVEN, which measures abstract reasoning. Analytical

Human potential is characterized by our ability to think flexibly and develop novel solutions to problems. In cognitive neuroscience, problem solving is studied using various tasks. For example, IQ can be tested using the RAVEN, which measures abstract reasoning. Analytical problem solving can be tested using algebra, and insight can be tested using a nine-dot test. Our class of problem-solving tasks blends analytical and insight processes. This can be done by measuring multiply-constrained problem solving (MCPS). MCPS occurs when an individual problem has several solutions, but when grouped with simultaneous problems only one correct solution presents itself. The most common test for MCPS is known at the CRAT, or compound remote associate task. For example, when given the three target words “water, skate, and cream” there are many compound associates that can be assigned each of the target words individually (i.e. salt-water, roller-skate, whipped-cream), but only one that works with all three (ice-water, ice-skate, ice-cream).
This thesis is a tutorial for a MATLAB user-interface, known as EEGLAB. Cognitive and neural correlates of analytical and insight processes were evaluated and analyzed in the CRAT using EEG. It was hypothesized that different EEG signals will be measured for analytical versus insight problem solving, primarily observed in the gamma wave production. The data was interpreted using EEGLAB, which allows psychological processes to be quantified based on physiological response. I have written a tutorial showing how to process the EEG signal through filtering, extracting epochs, artifact detection, independent component analysis, and the production of a time – frequency plot. This project has combined my interest in psychology with my knowledge of engineering and expand my knowledge of bioinstrumentation.
Date Created
2019-05
Agent

Predictable Encoding Aids Memory for Source Information

132713-Thumbnail Image.png
Description
Source monitoring refers to the ability to discriminate the origins of memories. The source monitoring framework is a theoretical model that describes the various characteristics of memories and judgement processes necessary for this discrimination process. Little research has analyzed the

Source monitoring refers to the ability to discriminate the origins of memories. The source monitoring framework is a theoretical model that describes the various characteristics of memories and judgement processes necessary for this discrimination process. Little research has analyzed the extent to which predictable encoding contexts influence source monitoring processes. In this study, we found that predictability at encoding aids later source recognition, but only when the test-relevant source dimension was predictable at encoding. The encoding format was either predictable (sequential spatial location) or non-predictable (random spatial location) and the test format was either color or location. In Experiment 1, the encoding format was either predictable or non-predictable spatial locations and participants were tested on the location. In this experiment, predictability did aid when the encoding format matched the test format. The average conditionalized source identification measure was statistically higher for those who saw images appear in a predictable pattern at encoding. In Experiment 2, when participants were tested on an orthogonal source dimension, the average conditionalized source identification measure was not statistically significant for those who saw the images appear in either encoding format. In this experiment, the predictability did not have an effect when the encoding format did not match the test format. In Experiment 3, there was a significant interaction of predictability by source dimension showing an improvement to memory for the predictable source condition and a decrement to memory for the unpredictable source dimension. In this experiment, predictability aided when encoding format matched the test format, but not when the encoding and test format did not match.
Date Created
2019-05
Agent

Individual Differences in False Memory: Why are Some People Prone to False Remembering?

132826-Thumbnail Image.png
Description
Although it has recently been demonstrated that source monitoring (SM) processes may mediate the relationship between working memory (WM) and false memories, little research has investigated whether the quality of monitoring processes can account for this reduction. In the current

Although it has recently been demonstrated that source monitoring (SM) processes may mediate the relationship between working memory (WM) and false memories, little research has investigated whether the quality of monitoring processes can account for this reduction. In the current study, participants performed multiple false memory, WM, and SM tasks. Consistent with previous research, SM abilities mediated the relationship between WM and false memories (regardless of whether or not participants were warned of the illusions at encoding). High SM individuals were better able to recall contextual information from study to correctly reject lures, whereas low SM individuals were more likely to rely on the quality of retrieved details to reject lures. These results suggest that individuals low and high in SM abilities rely on qualitatively different monitoring processes to reduce errors, and that individual differences in diagnostic monitoring strategies may account for previous relationships found between WM and false memories.
Date Created
2019-05
Agent

Pay to Play: Metacognitive Judgements, & Motivation in Multiply-Constrained Problem Solving

133534-Thumbnail Image.png
Description
Problem solving is a crucial skill needed to accomplish everyday tasks and overcome potential obstacles. One way to measure individual differences in problem solving ability is through performance differences on multiply-constrained problem solving tasks. Multiple cognitive processes are involved in

Problem solving is a crucial skill needed to accomplish everyday tasks and overcome potential obstacles. One way to measure individual differences in problem solving ability is through performance differences on multiply-constrained problem solving tasks. Multiple cognitive processes are involved in multiply-constrained problem solving. An individual uses prospective metacognitive monitoring judgments to gauge future allocation of resources before engaging in the necessary semantic search. Problem solvers also vary in their semantic search strategies, and use either an active analytical strategy or a passive insight strategy to arrive at asolution. Prospective metacognitive monitoring judgments and solution strategies are two aspects of the problem solving process that occur at specific points in the process while motivation influences problem solving throughout the process. The goal of this study is to examine prospective metacognitive judgments, problem solving accuracy, solution strategy, and motivation in multiply-constrained problem solving. Motivation was manipulated using a performance based monetary incentive. Participants self reported prospective Feeling-of-Knowing judgments after brief exposure to the problem, and solution strategy ratings after each problem. No significant differences were found to support the effect of motivation on problem solving accuracy, prospective metacognitive judgments, relative accuracy, or solution strategies. Significant differences were found between groups when comparing the number of problems skipped, indicating that participants were sensitive to the incentive structure. The findings suggest that motivation may not be an overarching mediator in multiply-constrained problem solving or problem solving may require a specific type of incentive structure to increase accuracy. However, little is known in the research literature about the type of incentive structure needed to consistently increase individual motivation.
Date Created
2018-05
Agent