Scalable register file architecture for CGRA accelerators

155058-Thumbnail Image.png
Description
Coarse-grained Reconfigurable Arrays (CGRAs) are promising accelerators capable

of accelerating even non-parallel loops and loops with low trip-counts. One challenge

in compiling for CGRAs is to manage both recurring and nonrecurring variables in

the register file (RF) of the CGRA. Although prior works

Coarse-grained Reconfigurable Arrays (CGRAs) are promising accelerators capable

of accelerating even non-parallel loops and loops with low trip-counts. One challenge

in compiling for CGRAs is to manage both recurring and nonrecurring variables in

the register file (RF) of the CGRA. Although prior works have managed recurring

variables via rotating RF, they access the nonrecurring variables through either a

global RF or from a constant memory. The former does not scale well, and the latter

degrades the mapping quality. This work proposes a hardware-software codesign

approach in order to manage all the variables in a local nonrotating RF. Hardware

provides modulo addition based indexing mechanism to enable correct addressing

of recurring variables in a nonrotating RF. The compiler determines the number of

registers required for each recurring variable and configures the boundary between the

registers used for recurring and nonrecurring variables. The compiler also pre-loads

the read-only variables and constants into the local registers in the prologue of the

schedule. Synthesis and place-and-route results of the previous and the proposed RF

design show that proposed solution achieves 17% better cycle time. Experiments of

mapping several important and performance-critical loops collected from MiBench

show proposed approach improves performance (through better mapping) by 18%,

compared to using constant memory.
Date Created
2016
Agent

InCheck - an integrated recovery methodology for fine-grained soft-error detection schemes

155040-Thumbnail Image.png
Description
Soft errors are considered as a key reliability challenge for sub-nano scale transistors. An ideal solution for such a challenge should ultimately eliminate the effect of soft errors from the microprocessor. While forward recovery techniques achieve fast recovery from errors

Soft errors are considered as a key reliability challenge for sub-nano scale transistors. An ideal solution for such a challenge should ultimately eliminate the effect of soft errors from the microprocessor. While forward recovery techniques achieve fast recovery from errors by simply voting out the wrong values, they incur the overhead of three copies execution. Backward recovery techniques only need two copies of execution, but suffer from check-pointing overhead.

In this work I explored the efficiency of integrating check-pointing into the application and the effectiveness of recovery that can be performed upon it. After evaluating the available fine-grained approaches to perform recovery, I am introducing InCheck, an in-application recovery scheme that can be integrated into instruction-duplication based techniques, thus providing a fast error recovery. The proposed technique makes light-weight checkpoints at the basic-block granularity, and uses them for recovery purposes.

To evaluate the effectiveness of the proposed technique, 10,000 fault injection experiments were performed on different hardware components of a modern ARM in-order simulated processor. InCheck was able to recover from all detected errors by replaying about 20 instructions, however, the state of the art recovery scheme failed more than 200 times.
Date Created
2016
Agent

Memory interference characterization and mitigation for heterogeneous smartphones

155034-Thumbnail Image.png
Description
The availability of a wide range of general purpose as well as accelerator cores on

modern smartphones means that a significant number of applications can be executed

on a smartphone simultaneously, resulting in an ever increasing demand on the memory

subsystem. While the

The availability of a wide range of general purpose as well as accelerator cores on

modern smartphones means that a significant number of applications can be executed

on a smartphone simultaneously, resulting in an ever increasing demand on the memory

subsystem. While the increased computation capability is intended for improving

user experience, memory requests from each concurrent application exhibit unique

memory access patterns as well as specific timing constraints. If not considered, this

could lead to significant memory contention and result in lowered user experience.

This work first analyzes the impact of memory degradation caused by the interference

at the memory system for a broad range of commonly-used smartphone applications.

The real system characterization results show that smartphone applications,

such as web browsing and media playback, suffer significant performance degradation.

This is caused by shared resource contention at the application processor’s last-level

cache, the communication fabric, and the main memory.

Based on the detailed characterization results, rest of this thesis focuses on the

design of an effective memory interference mitigation technique. Since web browsing,

being one of the most commonly-used smartphone applications and represents many

html-based smartphone applications, my thesis focuses on meeting the performance

requirement of a web browser on a smartphone in the presence of background processes

and co-scheduled applications. My thesis proposes a light-weight user space frequency

governor to mitigate the degradation caused by interfering applications, by predicting

the performance and power consumption of web browsing. The governor selects an

optimal energy-efficient frequency setting periodically by using the statically-trained

performance and power models with dynamically-varying architecture and system

conditions, such as the memory access intensity of background processes and/or coscheduled applications, and temperature of cores. The governor has been extensively evaluated on a Nexus 5 smartphone over a diverse range of mobile workloads. By

operating at the most energy-efficient frequency setting in the presence of interference,

energy efficiency is improved by as much as 35% and with an average of 18% compared

to the existing interactive governor, while maintaining the satisfactory performance

of web page loading under 3 seconds.
Date Created
2016
Agent

GemV a validated micro-architecture vulnerability estimation tool

154657-Thumbnail Image.png
Description
Several decades of transistor technology scaling has brought the threat of soft errors to modern embedded processors. Several techniques have been proposed to protect these systems from soft errors. However, their effectiveness in protecting the computation cannot be ascertained without

Several decades of transistor technology scaling has brought the threat of soft errors to modern embedded processors. Several techniques have been proposed to protect these systems from soft errors. However, their effectiveness in protecting the computation cannot be ascertained without accurate and quantitative estimation of system reliability. Vulnerability -- a metric that defines the probability of system-failure (reliability) through analytical models -- is the most effective mechanism for our current estimation and early design space exploration needs. Previous vulnerability estimation tools are based around the Sim-Alpha simulator which has been to shown to have several limitations. In this thesis, I present gemV: an accurate and comprehensive vulnerability estimation tool based on gem5. Gem5 is a popular cycle-accurate micro-architectural simulator that can model several different processor models in close to real hardware form. GemV can be used for fast and early design space exploration and also evaluate the protection afforded by commodity processors. gemV is comprehensive, since it models almost all sequential components of the processor. gemV is accurate because of fine-grain vulnerability tracking, accurate vulnerability modeling of squashed instructions, and accurate vulnerability modeling of shared data structures in gem5. gemV has been thoroughly validated against extensive fault injection experiments and achieves a 97\% accuracy with 95\% confidence. A micro-architect can use gemV to discover micro-architectural variants of a processor that minimize vulnerability for allowed performance penalty. A software developer can use gemV to explore the performance-vulnerability trade-off by choosing different algorithms and compiler optimizations, while the system designer can use gemV to explore the performance-vulnerability trade-offs of choosing different Insruction Set Architectures (ISA).
Date Created
2016
Agent

Design and synthesis of a hierarchical hybrid controller for quadrotor navigation

154276-Thumbnail Image.png
Description
There has been exciting progress in the area of Unmanned Aerial Vehicles (UAV) in the last decade, especially for quadrotors due to their nature of easy manipulation and simple structure. A lot of research has been done on achieving autonomous

There has been exciting progress in the area of Unmanned Aerial Vehicles (UAV) in the last decade, especially for quadrotors due to their nature of easy manipulation and simple structure. A lot of research has been done on achieving autonomous and robust control for quadrotors. Recently researchers have been utilizing linear temporal logic as mission specification language for robot motion planning due to its expressiveness and scalability. Several algorithms have been proposed to achieve autonomous temporal logic planning. Also, several frameworks are designed to compose those discrete planners and continuous controllers to make sure the actual trajectory also satisfies the mission specification. However, most of these works use first-order kinematic models which are not accurate when quadrotors fly at high speed and cannot fully utilize the potential of quadrotors.

This thesis work describes a new design for a hierarchical hybrid controller that is based on a dynamic model and seeks to achieve better performance in terms of speed and accuracy compared with some previous works. Furthermore, the proposed hierarchical controller is making progress towards guaranteed satisfaction of mission specification expressed in Linear Temporal Logic for dynamic systems. An event-driven receding horizon planner is also utilized that aims at distributed and decentralized planning for large-scale navigation scenarios. The benefits of this approach will be demonstrated using simulations results.
Date Created
2016
Agent

A study of backward compatible dynamic software update

154091-Thumbnail Image.png
Description
Dynamic software update (DSU) enables a program to update while it is running. DSU aims to minimize the loss due to program downtime for updates. Usually DSU is done in three steps: suspending the execution of an old program, mapping

Dynamic software update (DSU) enables a program to update while it is running. DSU aims to minimize the loss due to program downtime for updates. Usually DSU is done in three steps: suspending the execution of an old program, mapping the execution state from the old program to a new one, and resuming execution of the new program with the mapped state. The semantic correctness of DSU depends largely on the state mapping which is mostly composed by developers manually nowadays. However, the manual construction of a state mapping does not necessarily ensure sound and dependable state mapping. This dissertation presents a methodology to assist developers by automating the construction of a partial state mapping with a guarantee of correctness.

This dissertation includes a detailed study of DSU correctness and automatic state mapping for server programs with an established user base. At first, the dissertation presents the formal treatment of DSU correctness and the state mapping problem. Then the dissertation presents an argument that for programs with an established user base, dynamic updates must be backward compatible. The dissertation next presents a general definition of backward compatibility that specifies the allowed changes in program interaction between an old version and a new version and identified patterns of code evolution that results in backward compatible behavior. Thereafter the dissertation presents formal definitions of these patterns together with proof that any changes to programs in these patterns will result in backward compatible update. To show the applicability of the results, the dissertation presents SitBack, a program analysis tool that has an old version program and a new one as input and computes a partial state mapping under the assumption that the new version is backward compatible with the old version.

SitBack does not handle all kinds of changes and it reports to the user in incomplete part of a state mapping. The dissertation presents a detailed evaluation of SitBack which shows that the methodology of automatic state mapping is promising in deal with real world program updates. For example, SitBack produces state mappings for 17-75% of the changed functions. Furthermore, SitBack generates automatic state mapping that leads to successful DSU. In conclusion, the study presented in this dissertation does assist developers in developing state mappings for DSU by automating the construction of state mappings with a correctness guarantee, which helps the adoption of DSU ultimately.
Date Created
2015
Agent

Dynamic analysis of embedded software

154003-Thumbnail Image.png
Description
Most embedded applications are constructed with multiple threads to handle concurrent events. For optimization and debugging of the programs, dynamic program analysis is widely used to collect execution information while the program is running. Unfortunately, the non-deterministic behavior of multithreaded

Most embedded applications are constructed with multiple threads to handle concurrent events. For optimization and debugging of the programs, dynamic program analysis is widely used to collect execution information while the program is running. Unfortunately, the non-deterministic behavior of multithreaded embedded software makes the dynamic analysis difficult. In addition, instrumentation overhead for gathering execution information may change the execution of a program, and lead to distorted analysis results, i.e., probe effect. This thesis presents a framework that tackles the non-determinism and probe effect incurred in dynamic analysis of embedded software. The thesis largely consists of three parts. First of all, we discusses a deterministic replay framework to provide reproducible execution. Once a program execution is recorded, software instrumentation can be safely applied during replay without probe effect. Second, a discussion of probe effect is presented and a simulation-based analysis is proposed to detect execution changes of a program caused by instrumentation overhead. The simulation-based analysis examines if the recording instrumentation changes the original program execution. Lastly, the thesis discusses data race detection algorithms that help to remove data races for correctness of the replay and the simulation-based analysis. The focus is to make the detection efficient for C/C++ programs, and to increase scalability of the detection on multi-core machines.
Date Created
2015
Agent

Compiler and architecture design for coarse-grained programmable accelerators

153968-Thumbnail Image.png
Description
The holy grail of computer hardware across all market segments has been to sustain performance improvement at the same pace as silicon technology scales. As the technology scales and the size of transistors shrinks, the power consumption and energy usage

The holy grail of computer hardware across all market segments has been to sustain performance improvement at the same pace as silicon technology scales. As the technology scales and the size of transistors shrinks, the power consumption and energy usage per transistor decrease. On the other hand, the transistor density increases significantly by technology scaling. Due to technology factors, the reduction in power consumption per transistor is not sufficient to offset the increase in power consumption per unit area. Therefore, to improve performance, increasing energy-efficiency must be addressed at all design levels from circuit level to application and algorithm levels.

At architectural level, one promising approach is to populate the system with hardware accelerators each optimized for a specific task. One drawback of hardware accelerators is that they are not programmable. Therefore, their utilization can be low as they perform one specific function. Using software programmable accelerators is an alternative approach to achieve high energy-efficiency and programmability. Due to intrinsic characteristics of software accelerators, they can exploit both instruction level parallelism and data level parallelism.

Coarse-Grained Reconfigurable Architecture (CGRA) is a software programmable accelerator consists of a number of word-level functional units. Motivated by promising characteristics of software programmable accelerators, the potentials of CGRAs in future computing platforms is studied and an end-to-end CGRA research framework is developed. This framework consists of three different aspects: CGRA architectural design, integration in a computing system, and CGRA compiler. First, the design and implementation of a CGRA and its instruction set is presented. This design is then modeled in a cycle accurate system simulator. The simulation platform enables us to investigate several problems associated with a CGRA when it is deployed as an accelerator in a computing system. Next, the problem of mapping a compute intensive region of a program to CGRAs is formulated. From this formulation, several efficient algorithms are developed which effectively utilize CGRA scarce resources very well to minimize the running time of input applications. Finally, these mapping algorithms are integrated in a compiler framework to construct a compiler for CGRA
Date Created
2015
Agent

Optimization of multi-channel BCH error decoding for common cases

153668-Thumbnail Image.png
Description
Error correcting systems have put increasing demands on system designers, both due to increasing error correcting requirements and higher throughput targets. These requirements have led to greater silicon area, power consumption and have forced system designers to make trade-offs in

Error correcting systems have put increasing demands on system designers, both due to increasing error correcting requirements and higher throughput targets. These requirements have led to greater silicon area, power consumption and have forced system designers to make trade-offs in Error Correcting Code (ECC) functionality. Solutions to increase the efficiency of ECC systems are very important to system designers and have become a heavily researched area.

Many such systems incorporate the Bose-Chaudhuri-Hocquenghem (BCH) method of error correcting in a multi-channel configuration. BCH is a commonly used code because of its configurability, low storage overhead, and low decoding requirements when compared to other codes. Multi-channel configurations are popular with system designers because they offer a straightforward way to increase bandwidth. The ECC hardware is duplicated for each channel and the throughput increases linearly with the number of channels. The combination of these two technologies provides a configurable and high throughput ECC architecture.

This research proposes a new method to optimize a BCH error correction decoder in multi-channel configurations. In this thesis, I examine how error frequency effects the utilization of BCH hardware. Rather than implement each decoder as a single pipeline of independent decoding stages, the channels are considered together and served by a pool of decoding stages. Modified hardware blocks for handling common cases are included and the pool is sized based on an acceptable, but negligible decrease in performance.
Date Created
2015
Agent

Sustainable cloud computing

153220-Thumbnail Image.png
Description
Energy consumption of the data centers worldwide is rapidly growing fueled by ever-increasing demand for Cloud computing applications ranging from social networking to e-commerce. Understandably, ensuring energy-efficiency and sustainability of Cloud data centers without compromising performance is important for both

Energy consumption of the data centers worldwide is rapidly growing fueled by ever-increasing demand for Cloud computing applications ranging from social networking to e-commerce. Understandably, ensuring energy-efficiency and sustainability of Cloud data centers without compromising performance is important for both economic and environmental reasons. This dissertation develops a cyber-physical multi-tier server and workload management architecture which operates at the local and the global (geo-distributed) data center level. We devise optimization frameworks for each tier to optimize energy consumption, energy cost and carbon footprint of the data centers. The proposed solutions are aware of various energy management tradeoffs that manifest due to the cyber-physical interactions in data centers, while providing provable guarantee on the solutions' computation efficiency and energy/cost efficiency. The local data center level energy management takes into account the impact of server consolidation on the cooling energy, avoids cooling-computing power tradeoff, and optimizes the total energy (computing and cooling energy) considering the data centers' technology trends (servers' power proportionality and cooling system power efficiency). The global data center level cost management explores the diversity of the data centers to minimize the utility cost while satisfying the carbon cap requirement of the Cloud and while dealing with the adversity of the prediction error on the data center parameters. Finally, the synergy of the local and the global data center energy and cost optimization is shown to help towards achieving carbon neutrality (net-zero) in a cost efficient manner.
Date Created
2014
Agent