Composite Bricks from Fungus Mycelium and Nanomaterials for Sustainable Applications
Description
Plastics make up a large proportion of solid waste that ends up in landfills and pollute ecosystems, and do not readily decompose. Composites from fungus mycelium are a recent and promising alternative to replace plastics. Mycelium is the root-like fibers from fungi that grow underground. When fed with woody biomass, the mycelium becomes a dense mass. From there, the mycelium is placed in mold to take its shape and grow. Once the growth process is done, the mycelium is baked to end the growth, thus making a mycelium brick. The woody biomass fed into the mycelium can include materials such as sawdust and pistachio shells, which are all cheap feedstock. In comparison to plastics, mycelium bricks are mostly biodegradable and eco-friendly. Mycelium bricks are resistant to water, fire, and mold and are also lightweight, sustainable, and affordable. Mycelium based materials are a viable option to replace less eco-friendly materials. This project aims to explore growth factors of mycelium and incorporate nanomaterials into mycelium bricks to achieve strong and sustainable materials, specifically for packaging materials. The purpose of integrating nanomaterials into mycelium bricks is to add further functionality such as conductivity, and to enhance properties such as mechanical strength.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2019-05
Agent
- Author (aut): Wong, Cindy
- Thesis director: Wang, Qing Hua
- Committee member: Green, Alexander
- Contributor (ctb): Materials Science and Engineering Program
- Contributor (ctb): Barrett, The Honors College