Young Adult and Middle-Age Rats Display Unique Working Memory Impairment and Differential Neurobiological Profiles following Hysterectomy

158016-Thumbnail Image.png
Description
Hysterectomy is the second most common gynecological surgery performed in women. Half of these surgeries involve removal of the uterus alone, and half involve concomitant removal of the ovaries. While the field has retained the notion that the nonpregnant uterus

Hysterectomy is the second most common gynecological surgery performed in women. Half of these surgeries involve removal of the uterus alone, and half involve concomitant removal of the ovaries. While the field has retained the notion that the nonpregnant uterus is dormant, more recent findings suggest that hysterectomy is associated with cognitive detriment. Of note, the clinical literature suggests that an earlier age at hysterectomy, with or without concomitant ovarian removal, increases dementia risk, implicating age at surgery as a variable of interest. While preclinical work in a rodent model of hysterectomy has demonstrated spatial working memory impairments, the role of age at surgery has yet to be addressed. The current experiment utilized a rodent model of hysterectomy to investigate the importance of age at surgery in post- surgical cognitive outcomes and to evaluate relative protein expression related to brain activity, FosB and ∆FosB, in regions critical to spatial learning processes. Young adult and middle-aged female rats underwent sham surgery, hysterectomy, or hysterectomy with ovariectomy, and were tested on a behavioral battery that evaluated spatial working and reference memory. Following the behavioral battery, animals were sacrificed and brain tissues from the Dorsal Hippocampus and Entorhinal Cortex were processed via Western Blot for relative FosB and ∆FosB expression. Behavioral analyses demonstrated that animals receiving hysterectomy, regardless of age or ovarian status, were generally impaired in learning a complex spatial working memory task. However, rats that received hysterectomy in middle-age uniquely demonstrated persistent working memory impairment, particularly with a high working memory demand. Subsequent neurobiological analyses revealed young rats that underwent hysterectomy had reduced relative FosB expression in the Entorhinal Cortex compared to sham controls, where no significant effects were observed for rats that received surgery in middle-age. Finally, unique relationships between neurobiological and behavioral outcomes were observed largely for sham rats, suggesting that such surgical manipulations might modulate these relationships. Taken together, these findings suggest that age at surgery plays an important role in learning and memory outcomes following hysterectomy, and demonstrate the need for further research into the role of the uterus in communications between the reproductive tract and brain.
Date Created
2020
Agent

Deficits in Spatial Working Memory Depend on Age in a Novel Rat Model of Alzheimer's Disease

131942-Thumbnail Image.png
Description
There are currently no disease-modifying treatments to halt or attenuate the progression of Alzheimer’s disease (AD). Transgenic rodent models have provided researchers the ability to recapitulate particular pathological and symptomological events in disease progression. Complete reproduction of all features of

There are currently no disease-modifying treatments to halt or attenuate the progression of Alzheimer’s disease (AD). Transgenic rodent models have provided researchers the ability to recapitulate particular pathological and symptomological events in disease progression. Complete reproduction of all features of AD in a rodent model has not been achieved, potentially lending to the inconclusive treatment results at the clinical level. Recently, the TgF344-AD transgenic rat model has started to be evaluated; however, it has not been well characterized in terms of its cognition, which is fundamental to understanding the trajectory of aging relative to pathology and learning and memory changes. Therefore, the aim of the current study was to identify cognitive outcomes at 6, 9, and 12 months of age in the TgF344-AD rat model. Sixty female transgenic (Tg) and wildtype (WT) rats were tested on the water radial arm maze, Morris water maze, and visible platform task to evaluate cognition. Results from the asymptotic phase of the water radial arm maze showed that the 6 mo-Tg animals had marginally impaired working memory compared to 6 mo-WT rats, and 12 mo-Tg rats had significantly impaired working memory compared to 12 mo-WT rats. The 9 mo-Tg animals did not demonstrate a significant difference in working memory errors compared to the 9 mo-WT animals. This pattern of impairment, wherein Tg animals made more working memory errors compared to WT animals at the 6 and 12 month time points, but not at the 9 month time point, may be indicative of an inflammatory response that proves helpful at incipient stages of disease progression but eventually leads to further cognitive impairment. These results provide insight into the potential earliest time point that prodromal cognitive symptoms of AD exist, and how they progress with aging. Brain tissue was collected at sacrifice for future analyses of pathology, which will be used to glean insight into the temporal progression of pathological and cognitive outcomes.
Date Created
2020-05
Agent