Context recognition methods using audio signals for human-machine interaction

153488-Thumbnail Image.png
Description
Audio signals, such as speech and ambient sounds convey rich information pertaining to a user’s activity, mood or intent. Enabling machines to understand this contextual information is necessary to bridge the gap in human-machine interaction. This is challenging due to

Audio signals, such as speech and ambient sounds convey rich information pertaining to a user’s activity, mood or intent. Enabling machines to understand this contextual information is necessary to bridge the gap in human-machine interaction. This is challenging due to its subjective nature, hence, requiring sophisticated techniques. This dissertation presents a set of computational methods, that generalize well across different conditions, for speech-based applications involving emotion recognition and keyword detection, and ambient sounds-based applications such as lifelogging.

The expression and perception of emotions varies across speakers and cultures, thus, determining features and classification methods that generalize well to different conditions is strongly desired. A latent topic models-based method is proposed to learn supra-segmental features from low-level acoustic descriptors. The derived features outperform state-of-the-art approaches over multiple databases. Cross-corpus studies are conducted to determine the ability of these features to generalize well across different databases. The proposed method is also applied to derive features from facial expressions; a multi-modal fusion overcomes the deficiencies of a speech only approach and further improves the recognition performance.

Besides affecting the acoustic properties of speech, emotions have a strong influence over speech articulation kinematics. A learning approach, which constrains a classifier trained over acoustic descriptors, to also model articulatory data is proposed here. This method requires articulatory information only during the training stage, thus overcoming the challenges inherent to large-scale data collection, while simultaneously exploiting the correlations between articulation kinematics and acoustic descriptors to improve the accuracy of emotion recognition systems.

Identifying context from ambient sounds in a lifelogging scenario requires feature extraction, segmentation and annotation techniques capable of efficiently handling long duration audio recordings; a complete framework for such applications is presented. The performance is evaluated on real world data and accompanied by a prototypical Android-based user interface.

The proposed methods are also assessed in terms of computation and implementation complexity. Software and field programmable gate array based implementations are considered for emotion recognition, while virtual platforms are used to model the complexities of lifelogging. The derived metrics are used to determine the feasibility of these methods for applications requiring real-time capabilities and low power consumption.
Date Created
2015
Agent

Reconstruction-free inference from compressive measurements

153394-Thumbnail Image.png
Description
As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-ste

As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-step process of acquisition and compression of pixel measurements in a conventional camera, into a single step. A popular variant is the single-pixel camera that obtains measurements of the scene using a pseudo-random measurement matrix. Advances in compressive sensing (CS) theory in the past decade have supplied the tools that, in theory, allow near-perfect reconstruction of an image from these measurements even for sub-Nyquist sampling rates. However, current state-of-the-art reconstruction algorithms suffer from two drawbacks -- They are (1) computationally very expensive and (2) incapable of yielding high fidelity reconstructions for high compression ratios. In computer vision, the final goal is usually to perform an inference task using the images acquired and not signal recovery. With this motivation, this thesis considers the possibility of inference directly from compressed measurements, thereby obviating the need to use expensive reconstruction algorithms. It is often the case that non-linear features are used for inference tasks in computer vision. However, currently, it is unclear how to extract such features from compressed measurements. Instead, using the theoretical basis provided by the Johnson-Lindenstrauss lemma, discriminative features using smashed correlation filters are derived and it is shown that it is indeed possible to perform reconstruction-free inference at high compression ratios with only a marginal loss in accuracy. As a specific inference problem in computer vision, face recognition is considered, mainly beyond the visible spectrum such as in the short wave infra-red region (SWIR), where sensors are expensive.
Date Created
2015
Agent

Estimation of subspace occupancy

153287-Thumbnail Image.png
Description
The ability to identify unoccupied resources in the radio spectrum is a key capability for opportunistic users in a cognitive radio environment. This paper draws upon and extends geometrically based ideas in statistical signal processing to develop estimators for the

The ability to identify unoccupied resources in the radio spectrum is a key capability for opportunistic users in a cognitive radio environment. This paper draws upon and extends geometrically based ideas in statistical signal processing to develop estimators for the rank and the occupied subspace in a multi-user environment from multiple temporal samples of the signal received at a single antenna. These estimators enable identification of resources, such as the orthogonal complement of the occupied subspace, that may be exploitable by an opportunistic user. This concept is supported by simulations showing the estimation of the number of users in a simple CDMA system using a maximum a posteriori (MAP) estimate for the rank. It was found that with suitable parameters, such as high SNR, sufficient number of time epochs and codes of appropriate length, the number of users could be correctly estimated using the MAP estimator even when the noise variance is unknown. Additionally, the process of identifying the maximum likelihood estimate of the orthogonal projector onto the unoccupied subspace is discussed.
Date Created
2014
Agent

Fisheye camera calibration and applications

153270-Thumbnail Image.png
Description
Fisheye cameras are special cameras that have a much larger field of view compared to

conventional cameras. The large field of view comes at a price of non-linear distortions

introduced near the boundaries of the images captured by such cameras. Despite this

drawback,

Fisheye cameras are special cameras that have a much larger field of view compared to

conventional cameras. The large field of view comes at a price of non-linear distortions

introduced near the boundaries of the images captured by such cameras. Despite this

drawback, they are being used increasingly in many applications of computer vision,

robotics, reconnaissance, astrophotography, surveillance and automotive applications.

The images captured from such cameras can be corrected for their distortion if the

cameras are calibrated and the distortion function is determined. Calibration also allows

fisheye cameras to be used in tasks involving metric scene measurement, metric

scene reconstruction and other simultaneous localization and mapping (SLAM) algorithms.

This thesis presents a calibration toolbox (FisheyeCDC Toolbox) that implements a collection of some of the most widely used techniques for calibration of fisheye cameras under one package. This enables an inexperienced user to calibrate his/her own camera without the need for a theoretical understanding about computer vision and camera calibration. This thesis also explores some of the applications of calibration such as distortion correction and 3D reconstruction.
Date Created
2014
Agent

Grassmannian learning for facial expression recognition from video

153249-Thumbnail Image.png
Description
In this thesis we consider the problem of facial expression recognition (FER) from video sequences. Our method is based on subspace representations and Grassmann manifold based learning. We use Local Binary Pattern (LBP) at the frame level for representing the

In this thesis we consider the problem of facial expression recognition (FER) from video sequences. Our method is based on subspace representations and Grassmann manifold based learning. We use Local Binary Pattern (LBP) at the frame level for representing the facial features. Next we develop a model to represent the video sequence in a lower dimensional expression subspace and also as a linear dynamical system using Autoregressive Moving Average (ARMA) model. As these subspaces lie on Grassmann space, we use Grassmann manifold based learning techniques such as kernel Fisher Discriminant Analysis with Grassmann kernels for classification. We consider six expressions namely, Angry (AN), Disgust (Di), Fear (Fe), Happy (Ha), Sadness (Sa) and Surprise (Su) for classification. We perform experiments on extended Cohn-Kanade (CK+) facial expression database to evaluate the expression recognition performance. Our method demonstrates good expression recognition performance outperforming other state of the art FER algorithms. We achieve an average recognition accuracy of 97.41% using a method based on expression subspace, kernel-FDA and Support Vector Machines (SVM) classifier. By using a simpler classifier, 1-Nearest Neighbor (1-NN) along with kernel-FDA, we achieve a recognition accuracy of 97.09%. We find that to process a group of 19 frames in a video sequence, LBP feature extraction requires majority of computation time (97 %) which is about 1.662 seconds on the Intel Core i3, dual core platform. However when only 3 frames (onset, middle and peak) of a video sequence are used, the computational complexity is reduced by about 83.75 % to 260 milliseconds at the expense of drop in the recognition accuracy to 92.88 %.
Date Created
2014
Agent

Applied interdisciplinary concepts for designing visual media within interactive neurorehabilitation systems

Description
As the application of interactive media systems expands to address broader problems in health, education and creative practice, they fall within a higher dimensional space for which it is inherently more complex to design. In response to this need an

As the application of interactive media systems expands to address broader problems in health, education and creative practice, they fall within a higher dimensional space for which it is inherently more complex to design. In response to this need an emerging area of interactive system design, referred to as experiential media systems, applies hybrid knowledge synthesized across multiple disciplines to address challenges relevant to daily experience. Interactive neurorehabilitation (INR) aims to enhance functional movement therapy by integrating detailed motion capture with interactive feedback in a manner that facilitates engagement and sensorimotor learning for those who have suffered neurologic injury. While INR shows great promise to advance the current state of therapies, a cohesive media design methodology for INR is missing due to the present lack of substantial evidence within the field. Using an experiential media based approach to draw knowledge from external disciplines, this dissertation proposes a compositional framework for authoring visual media for INR systems across contexts and applications within upper extremity stroke rehabilitation. The compositional framework is applied across systems for supervised training, unsupervised training, and assisted reflection, which reflect the collective work of the Adaptive Mixed Reality Rehabilitation (AMRR) Team at Arizona State University, of which the author is a member. Formal structures and a methodology for applying them are described in detail for the visual media environments designed by the author. Data collected from studies conducted by the AMRR team to evaluate these systems in both supervised and unsupervised training contexts is also discussed in terms of the extent to which the application of the compositional framework is supported and which aspects require further investigation. The potential broader implications of the proposed compositional framework and methodology are the dissemination of interdisciplinary information to accelerate the informed development of INR applications and to demonstrate the potential benefit of generalizing integrative approaches, merging arts and science based knowledge, for other complex problems related to embodied learning.
Date Created
2014
Agent

A real-time vision system for a semi-autonomous surface vehicle

153022-Thumbnail Image.png
Description
In the sport of competitive water skiing, the skill of a human boat driver can affect athletic performance. Driver influence is not necessarily inhibitive to skiers, however, it reduces the fairness and credibility of the sport overall. In response to

In the sport of competitive water skiing, the skill of a human boat driver can affect athletic performance. Driver influence is not necessarily inhibitive to skiers, however, it reduces the fairness and credibility of the sport overall. In response to the stated problem, this thesis proposes a vision-based real-time control system designed specifically for tournament waterski boats. The challenges addressed in this thesis include: one, the segmentation of floating objects in frame sequences captured by a moving camera, two, the identification of segmented objects which fit a predefined model, and three, the accurate and fast estimation of camera position and orientation from coplanar point correspondences. This thesis discusses current ideas and proposes new methods for the three challenges mentioned. In the end, a working prototype is produced.
Date Created
2014
Agent

Head rotation detection in marmoset monkeys

152941-Thumbnail Image.png
Description
Head movement is known to have the benefit of improving the accuracy of sound localization for humans and animals. Marmoset is a small bodied New World monkey species and it has become an emerging model for studying the auditory

Head movement is known to have the benefit of improving the accuracy of sound localization for humans and animals. Marmoset is a small bodied New World monkey species and it has become an emerging model for studying the auditory functions. This thesis aims to detect the horizontal and vertical rotation of head movement in marmoset monkeys.

Experiments were conducted in a sound-attenuated acoustic chamber. Head movement of marmoset monkey was studied under various auditory and visual stimulation conditions. With increasing complexity, these conditions are (1) idle, (2) sound-alone, (3) sound and visual signals, and (4) alert signal by opening and closing of the chamber door. All of these conditions were tested with either house light on or off. Infra-red camera with a frame rate of 90 Hz was used to capture of the head movement of monkeys. To assist the signal detection, two circular markers were attached to the top of monkey head. The data analysis used an image-based marker detection scheme. Images were processed using the Computation Vision Toolbox in Matlab. The markers and their positions were detected using blob detection techniques. Based on the frame-by-frame information of marker positions, the angular position, velocity and acceleration were extracted in horizontal and vertical planes. Adaptive Otsu Thresholding, Kalman filtering and bound setting for marker properties were used to overcome a number of challenges encountered during this analysis, such as finding image segmentation threshold, continuously tracking markers during large head movement, and false alarm detection.

The results show that the blob detection method together with Kalman filtering yielded better performances than other image based techniques like optical flow and SURF features .The median of the maximal head turn in the horizontal plane was in the range of 20 to 70 degrees and the median of the maximal velocity in horizontal plane was in the range of a few hundreds of degrees per second. In comparison, the natural alert signal - door opening and closing - evoked the faster head turns than other stimulus conditions. These results suggest that behaviorally relevant stimulus such as alert signals evoke faster head-turn responses in marmoset monkeys.
Date Created
2014
Agent

Semantic sparse learning in images and videos

152840-Thumbnail Image.png
Description
Many learning models have been proposed for various tasks in visual computing. Popular examples include hidden Markov models and support vector machines. Recently, sparse-representation-based learning methods have attracted a lot of attention in the computer vision field, largely because of

Many learning models have been proposed for various tasks in visual computing. Popular examples include hidden Markov models and support vector machines. Recently, sparse-representation-based learning methods have attracted a lot of attention in the computer vision field, largely because of their impressive performance in many applications. In the literature, many of such sparse learning methods focus on designing or application of some learning techniques for certain feature space without much explicit consideration on possible interaction between the underlying semantics of the visual data and the employed learning technique. Rich semantic information in most visual data, if properly incorporated into algorithm design, should help achieving improved performance while delivering intuitive interpretation of the algorithmic outcomes. My study addresses the problem of how to explicitly consider the semantic information of the visual data in the sparse learning algorithms. In this work, we identify four problems which are of great importance and broad interest to the community. Specifically, a novel approach is proposed to incorporate label information to learn a dictionary which is not only reconstructive but also discriminative; considering the formation process of face images, a novel image decomposition approach for an ensemble of correlated images is proposed, where a subspace is built from the decomposition and applied to face recognition; based on the observation that, the foreground (or salient) objects are sparse in input domain and the background is sparse in frequency domain, a novel and efficient spatio-temporal saliency detection algorithm is proposed to identify the salient regions in video; and a novel hidden Markov model learning approach is proposed by utilizing a sparse set of pairwise comparisons among the data, which is easier to obtain and more meaningful, consistent than tradition labels, in many scenarios, e.g., evaluating motion skills in surgical simulations. In those four problems, different types of semantic information are modeled and incorporated in designing sparse learning algorithms for the corresponding visual computing tasks. Several real world applications are selected to demonstrate the effectiveness of the proposed methods, including, face recognition, spatio-temporal saliency detection, abnormality detection, spatio-temporal interest point detection, motion analysis and emotion recognition. In those applications, data of different modalities are involved, ranging from audio signal, image to video. Experiments on large scale real world data with comparisons to state-of-art methods confirm the proposed approaches deliver salient advantages, showing adding those semantic information dramatically improve the performances of the general sparse learning methods.
Date Created
2014
Agent

Geometry aware compressive analysis of human activities: application in a smart phone platform

152813-Thumbnail Image.png
Description
Continuous monitoring of sensor data from smart phones to identify human activities and gestures, puts a heavy load on the smart phone's power consumption. In this research study, the non-Euclidean geometry of the rich sensor data obtained from the user's

Continuous monitoring of sensor data from smart phones to identify human activities and gestures, puts a heavy load on the smart phone's power consumption. In this research study, the non-Euclidean geometry of the rich sensor data obtained from the user's smart phone is utilized to perform compressive analysis and efficient classification of human activities by employing machine learning techniques. We are interested in the generalization of classical tools for signal approximation to newer spaces, such as rotation data, which is best studied in a non-Euclidean setting, and its application to activity analysis. Attributing to the non-linear nature of the rotation data space, which involve a heavy overload on the smart phone's processor and memory as opposed to feature extraction on the Euclidean space, indexing and compaction of the acquired sensor data is performed prior to feature extraction, to reduce CPU overhead and thereby increase the lifetime of the battery with a little loss in recognition accuracy of the activities. The sensor data represented as unit quaternions, is a more intrinsic representation of the orientation of smart phone compared to Euler angles (which suffers from Gimbal lock problem) or the computationally intensive rotation matrices. Classification algorithms are employed to classify these manifold sequences in the non-Euclidean space. By performing customized indexing (using K-means algorithm) of the evolved manifold sequences before feature extraction, considerable energy savings is achieved in terms of smart phone's battery life.
Date Created
2014
Agent