Development of hardware and software for a game-like wireless spatial sound distribution system

154721-Thumbnail Image.png
Description
Several music players have evolved in multi-dimensional and surround sound systems. The audio players are implemented as software applications for different audio hardware systems. Digital formats and wireless networks allow for audio content to be readily accessible on smart networked

Several music players have evolved in multi-dimensional and surround sound systems. The audio players are implemented as software applications for different audio hardware systems. Digital formats and wireless networks allow for audio content to be readily accessible on smart networked devices. Therefore, different audio output platforms ranging from multispeaker high-end surround systems to single unit Bluetooth speakers have been developed. A large body of research has been carried out in audio processing, beamforming, sound fields etc. and new formats are developed to create realistic audio experiences.

An emerging trend is seen towards high definition AV systems, virtual reality gears as well as gaming applications with multidimensional audio. Next generation media technology is concentrating around Virtual reality experience and devices. It has applications not only in gaming but all other fields including medical, entertainment, engineering, and education. All such systems also require realistic audio corresponding with the visuals.

In the project presented in this thesis, a new portable audio hardware system is designed and developed along with a dedicated mobile android application to render immersive surround sound experiences with real-time audio effects. The tablet and mobile phone allow the user to control or “play” with sound directionality and implement various audio effects including sound rotation, spatialization, and other immersive experiences. The thesis describes the hardware and software design, provides the theory of the sound effects, and presents demonstrations of the sound application that was created.
Date Created
2016
Agent

Analysis of habitual patterns in vernacular movement

154633-Thumbnail Image.png
Description
This thesis aims to explore the language of different bodies in the field of dance by analyzing

the habitual patterns of dancers from different backgrounds and vernaculars. Contextually,

the term habitual patterns is defined as the postures or poses that tend to

This thesis aims to explore the language of different bodies in the field of dance by analyzing

the habitual patterns of dancers from different backgrounds and vernaculars. Contextually,

the term habitual patterns is defined as the postures or poses that tend to re-appear,

often unintentionally, as the dancer performs improvisational dance. The focus lies in exposing

the movement vocabulary of a dancer to reveal his/her unique fingerprint.

The proposed approach for uncovering these movement patterns is to use a clustering

technique; mainly k-means. In addition to a static method of analysis, this paper uses

an online method of clustering using a streaming variant of k-means that integrates into

the flow of components that can be used in a real-time interactive dance performance. The

computational system is trained by the dancer to discover identifying patterns and therefore

it enables a feedback loop resulting in a rich exchange between dancer and machine. This

can help break a dancer’s tendency to create similar postures, explore larger kinespheric

space and invent movement beyond their current capabilities.

This paper describes a project that distinguishes itself in that it uses a custom database

that is curated for the purpose of highlighting the similarities and differences between various

movement forms. It puts particular emphasis on the process of choosing source movement

qualitatively, before the technological capture process begins.
Date Created
2016
Agent

Geometric approaches for modeling movement quality: applications in motor control and therapy

154630-Thumbnail Image.png
Description
There has been tremendous technological advancement in the past two decades. Faster computers and improved sensing devices have broadened the research scope in computer vision. With these developments, the task of assessing the quality of human actions, is considered an

There has been tremendous technological advancement in the past two decades. Faster computers and improved sensing devices have broadened the research scope in computer vision. With these developments, the task of assessing the quality of human actions, is considered an important problem that needs to be tackled. Movement quality assessment finds wide range of application in motor control, health-care, rehabilitation and physical therapy. Home-based interactive physical therapy requires the ability to monitor, inform and assess the quality of everyday movements. Obtaining labeled data from trained therapists/experts is the main limitation, since it is both expensive and time consuming.

Motivated by recent studies in motor control and therapy, in this thesis an existing computational framework is used to assess balance impairment and disease severity in people suffering from Parkinson's disease. The framework uses high-dimensional shape descriptors of the reconstructed phase space, of the subjects' center of pressure (CoP) tracings while performing dynamical postural shifts. The performance of the framework is evaluated using a dataset collected from 43 healthy and 17 Parkinson's disease impaired subjects, and outperforms other methods, such as dynamical shift indices and use of chaotic invariants, in assessment of balance impairment.

In this thesis, an unsupervised method is also proposed that measures movement quality assessment of simple actions like sit-to-stand and dynamic posture shifts by modeling the deviation of a given movement from an ideal movement path in the configuration space, i.e. the quality of movement is directly related to similarity to the ideal trajectory, between the start and end pose. The S^1xS^1 configuration space was used to model the interaction of two joint angles in sit-to-stand actions, and the R^2 space was used to model the subject's CoP while performing dynamic posture shifts for application in movement quality estimation.
Date Created
2016
Agent

The design and evaluation of a kinect-based postural symmetry assessment and training system

154603-Thumbnail Image.png
Description
The increased risk of falling and the worse ability to perform other daily physical activities in the elderly cause concern about monitoring and correcting basic everyday movement. In this thesis, a Kinect-based system was designed to assess one of the

The increased risk of falling and the worse ability to perform other daily physical activities in the elderly cause concern about monitoring and correcting basic everyday movement. In this thesis, a Kinect-based system was designed to assess one of the most important factors in balance control of human body when doing Sit-to-Stand (STS) movement: the postural symmetry in mediolateral direction. A symmetry score, calculated by the data obtained from a Kinect RGB-D camera, was proposed to reflect the mediolateral postural symmetry degree and was used to drive a real-time audio feedback designed in MAX/MSP to help users adjust themselves to perform their movement in a more symmetrical way during STS. The symmetry score was verified by calculating the Spearman correlation coefficient with the data obtained from Inertial Measurement Unit (IMU) sensor and got an average value at 0.732. Five healthy adults, four males and one female, with normal balance abilities and with no musculoskeletal disorders, were selected to participate in the experiment and the results showed that the low-cost Kinect-based system has the potential to train users to perform a more symmetrical movement in mediolateral direction during STS movement.
Date Created
2016
Agent

Model-driven time-varying signal analysis and its application to speech processing

154572-Thumbnail Image.png
Description
This work examines two main areas in model-based time-varying signal processing with emphasis in speech processing applications. The first area concentrates on improving speech intelligibility and on increasing the proposed methodologies application for clinical practice in speech-language pathology. The second

This work examines two main areas in model-based time-varying signal processing with emphasis in speech processing applications. The first area concentrates on improving speech intelligibility and on increasing the proposed methodologies application for clinical practice in speech-language pathology. The second area concentrates on signal expansions matched to physical-based models but without requiring independent basis functions; the significance of this work is demonstrated with speech vowels.

A fully automated Vowel Space Area (VSA) computation method is proposed that can be applied to any type of speech. It is shown that the VSA provides an efficient and reliable measure and is correlated to speech intelligibility. A clinical tool that incorporates the automated VSA was proposed for evaluation and treatment to be used by speech language pathologists. Two exploratory studies are performed using two databases by analyzing mean formant trajectories in healthy speech for a wide range of speakers, dialects, and coarticulation contexts. It is shown that phonemes crowded in formant space can often have distinct trajectories, possibly due to accurate perception.

A theory for analyzing time-varying signals models with amplitude modulation and frequency modulation is developed. Examples are provided that demonstrate other possible signal model decompositions with independent basis functions and corresponding physical interpretations. The Hilbert transform (HT) and the use of the analytic form of a signal are motivated, and a proof is provided to show that a signal can still preserve desirable mathematical properties without the use of the HT. A visualization of the Hilbert spectrum is proposed to aid in the interpretation. A signal demodulation is proposed and used to develop a modified Empirical Mode Decomposition (EMD) algorithm.
Date Created
2016
Agent

Sensor management algorithms for measurement of diffusion processes

154532-Thumbnail Image.png
Description
Modern systems that measure dynamical phenomena often have limitations as to how many sensors can operate at any given time step. This thesis considers a sensor scheduling problem in which the source of a diffusive phenomenon is to be

Modern systems that measure dynamical phenomena often have limitations as to how many sensors can operate at any given time step. This thesis considers a sensor scheduling problem in which the source of a diffusive phenomenon is to be localized using single point measurements of its concentration. With a linear diffusion model, and in the absence of noise, classical observability theory describes whether or not the system's initial state can be deduced from a given set of linear measurements. However, it does not describe to what degree the system is observable. Different metrics of observability have been proposed in literature to address this issue. Many of these methods are based on choosing optimal or sub-optimal sensor schedules from a predetermined collection of possibilities. This thesis proposes two greedy algorithms for a one-dimensional and two-dimensional discrete diffusion processes. The first algorithm considers a deterministic linear dynamical system and deterministic linear measurements. The second algorithm considers noise on the measurements and is compared to a Kalman filter scheduling method described in published work.
Date Created
2016
Agent

Statistical and dynamical modeling of Riemannian trajectories with application to human movement analysis

154471-Thumbnail Image.png
Description
The data explosion in the past decade is in part due to the widespread use of rich sensors that measure various physical phenomenon -- gyroscopes that measure orientation in phones and fitness devices, the Microsoft Kinect which measures depth information,

The data explosion in the past decade is in part due to the widespread use of rich sensors that measure various physical phenomenon -- gyroscopes that measure orientation in phones and fitness devices, the Microsoft Kinect which measures depth information, etc. A typical application requires inferring the underlying physical phenomenon from data, which is done using machine learning. A fundamental assumption in training models is that the data is Euclidean, i.e. the metric is the standard Euclidean distance governed by the L-2 norm. However in many cases this assumption is violated, when the data lies on non Euclidean spaces such as Riemannian manifolds. While the underlying geometry accounts for the non-linearity, accurate analysis of human activity also requires temporal information to be taken into account. Human movement has a natural interpretation as a trajectory on the underlying feature manifold, as it evolves smoothly in time. A commonly occurring theme in many emerging problems is the need to \emph{represent, compare, and manipulate} such trajectories in a manner that respects the geometric constraints. This dissertation is a comprehensive treatise on modeling Riemannian trajectories to understand and exploit their statistical and dynamical properties. Such properties allow us to formulate novel representations for Riemannian trajectories. For example, the physical constraints on human movement are rarely considered, which results in an unnecessarily large space of features, making search, classification and other applications more complicated. Exploiting statistical properties can help us understand the \emph{true} space of such trajectories. In applications such as stroke rehabilitation where there is a need to differentiate between very similar kinds of movement, dynamical properties can be much more effective. In this regard, we propose a generalization to the Lyapunov exponent to Riemannian manifolds and show its effectiveness for human activity analysis. The theory developed in this thesis naturally leads to several benefits in areas such as data mining, compression, dimensionality reduction, classification, and regression.
Date Created
2016
Agent

Towards robust semantic attribute learning in visual computing

154464-Thumbnail Image.png
Description
The rapid growth of social media in recent years provides a large amount of user-generated visual objects, e.g., images and videos. Advanced semantic understanding approaches on such visual objects are desired to better serve applications such as human-machine interaction, image

The rapid growth of social media in recent years provides a large amount of user-generated visual objects, e.g., images and videos. Advanced semantic understanding approaches on such visual objects are desired to better serve applications such as human-machine interaction, image retrieval, etc. Semantic visual attributes have been proposed and utilized in multiple visual computing tasks to bridge the so-called "semantic gap" between extractable low-level feature representations and high-level semantic understanding of the visual objects.

Despite years of research, there are still some unsolved problems on semantic attribute learning. First, real-world applications usually involve hundreds of attributes which requires great effort to acquire sufficient amount of labeled data for model learning. Second, existing attribute learning work for visual objects focuses primarily on images, with semantic analysis on videos left largely unexplored.

In this dissertation I conduct innovative research and propose novel approaches to tackling the aforementioned problems. In particular, I propose robust and accurate learning frameworks on both attribute ranking and prediction by exploring the correlation among multiple attributes and utilizing various types of label information. Furthermore, I propose a video-based skill coaching framework by extending attribute learning to the video domain for robust motion skill analysis. Experiments on various types of applications and datasets and comparisons with multiple state-of-the-art baseline approaches confirm that my proposed approaches can achieve significant performance improvements for the general attribute learning problem.
Date Created
2016
Agent

Kinematic and dynamical analysis techniques for human movement analysis from portable sensing devices

154384-Thumbnail Image.png
Description
Today's world is seeing a rapid technological advancement in various fields, having access to faster computers and better sensing devices. With such advancements, the task of recognizing human activities has been acknowledged as an important problem, with a wide range

Today's world is seeing a rapid technological advancement in various fields, having access to faster computers and better sensing devices. With such advancements, the task of recognizing human activities has been acknowledged as an important problem, with a wide range of applications such as surveillance, health monitoring and animation. Traditional approaches to dynamical modeling have included linear and nonlinear methods with their respective drawbacks. An alternative idea I propose is the use of descriptors of the shape of the dynamical attractor as a feature representation for quantification of nature of dynamics. The framework has two main advantages over traditional approaches: a) representation of the dynamical system is derived directly from the observational data, without any inherent assumptions, and b) the proposed features show stability under different time-series lengths where traditional dynamical invariants fail.

Approximately 1\% of the total world population are stroke survivors, making it the most common neurological disorder. This increasing demand for rehabilitation facilities has been seen as a significant healthcare problem worldwide. The laborious and expensive process of visual monitoring by physical therapists has motivated my research to invent novel strategies to supplement therapy received in hospital in a home-setting. In this direction, I propose a general framework for tuning component-level kinematic features using therapists’ overall impressions of movement quality, in the context of a Home-based Adaptive Mixed Reality Rehabilitation (HAMRR) system.

The rapid technological advancements in computing and sensing has resulted in large amounts of data which requires powerful tools to analyze. In the recent past, topological data analysis methods have been investigated in various communities, and the work by Carlsson establishes that persistent homology can be used as a powerful topological data analysis approach for effectively analyzing large datasets. I have explored suitable topological data analysis methods and propose a framework for human activity analysis utilizing the same for applications such as action recognition.
Date Created
2016
Agent

Particle image segmentation based on Bhattacharyya distance

153947-Thumbnail Image.png
Description
Image segmentation is of great importance and value in many applications. In computer vision, image segmentation is the tool and process of locating objects and boundaries within images. The segmentation result may provide more meaningful image data. Generally, there are

Image segmentation is of great importance and value in many applications. In computer vision, image segmentation is the tool and process of locating objects and boundaries within images. The segmentation result may provide more meaningful image data. Generally, there are two fundamental image segmentation algorithms: discontinuity and similarity. The idea behind discontinuity is locating the abrupt changes in intensity of images, as are often seen in edges or boundaries. Similarity subdivides an image into regions that fit the pre-defined criteria. The algorithm utilized in this thesis is the second category.

This study addresses the problem of particle image segmentation by measuring the similarity between a sampled region and an adjacent region, based on Bhattacharyya distance and an image feature extraction technique that uses distribution of local binary patterns and pattern contrasts. A boundary smoothing process is developed to improve the accuracy of the segmentation. The novel particle image segmentation algorithm is tested using four different cases of particle image velocimetry (PIV) images. The obtained experimental results of segmentations provide partitioning of the objects within 10 percent error rate. Ground-truth segmentation data, which are manually segmented image from each case, are used to calculate the error rate of the segmentations.
Date Created
2015
Agent