Deep Hierarchical Reconstruction for Open-Set Recognition

161804-Thumbnail Image.png
Description
The field of Computer Vision has seen great accomplishments in the last decade due to the advancements in Deep Learning. With the advent of Convolutional Neural Networks, the task of image classification has achieved unimaginable success when perceived through

The field of Computer Vision has seen great accomplishments in the last decade due to the advancements in Deep Learning. With the advent of Convolutional Neural Networks, the task of image classification has achieved unimaginable success when perceived through the traditional Computer Vision lens. With that being said, the state-of-the-art results in the image classification task were produced under a closed set assumption i.e. the input samples and the target datasets have knowledge of class labels in the testing phase. When any real-world scenario is considered, the model encounters unknown instances in the data. The task of identifying these unknown instances is called Open-Set Classification. This dissertation talks about the detection of unknown classes and the classification of the known classes. The problem is approached by using a neural network architecture called Deep Hierarchical Reconstruction Nets (DHRNets). It is dealt with by leveraging the reconstruction part of the DHRNets to identify the known class labels from the data. Experiments were also conducted on Convolutional Neural Networks (CNN) on the basis of softmax probability, Autoencoders on the basis of reconstruction loss, and Mahalanobis distance on CNN's to approach this problem.
Date Created
2021
Agent

Facial Expression Recognition Using Machine Learning

131212-Thumbnail Image.png
Description
In recent years, the development of new Machine Learning models has allowed for new technological advancements to be introduced for practical use across the world. Multiple studies and experiments have been conducted to create new variations of Machine Learning models

In recent years, the development of new Machine Learning models has allowed for new technological advancements to be introduced for practical use across the world. Multiple studies and experiments have been conducted to create new variations of Machine Learning models with different algorithms to determine if potential systems would prove to be successful. Even today, there are still many research initiatives that are continuing to develop new models in the hopes to discover potential solutions for problems such as autonomous driving or determining the emotional value from a single sentence. One of the current popular research topics for Machine Learning is the development of Facial Expression Recognition systems. These Machine Learning models focus on classifying images of human faces that are expressing different emotions through facial expressions. In order to develop effective models to perform Facial Expression Recognition, researchers have gone on to utilize Deep Learning models, which are a more advanced implementation of Machine Learning models, known as Neural Networks. More specifically, the use of Convolutional Neural Networks has proven to be the most effective models for achieving highly accurate results at classifying images of various facial expressions. Convolutional Neural Networks are Deep Learning models that are capable of processing visual data, such as images and videos, and can be used to identify various facial expressions. The purpose of this project, I focused on learning about the important concepts of Machine Learning, Deep Learning, and Convolutional Neural Networks to implement a Convolutional Neural Network that was previously developed by a recommended research paper.
Date Created
2020-05
Agent

Representation, Exploration, and Recommendation of Music Playlists

157595-Thumbnail Image.png
Description
Playlists have become a significant part of the music listening experience today because of the digital cloud-based services such as Spotify, Pandora, Apple Music. Owing to the meteoric rise in usage of playlists, recommending playlists is crucial to music services

Playlists have become a significant part of the music listening experience today because of the digital cloud-based services such as Spotify, Pandora, Apple Music. Owing to the meteoric rise in usage of playlists, recommending playlists is crucial to music services today. Although there has been a lot of work done in playlist prediction, the area of playlist representation hasn't received that level of attention. Over the last few years, sequence-to-sequence models, especially in the field of natural language processing have shown the effectiveness of learned embeddings in capturing the semantic characteristics of sequences. Similar concepts can be applied to music to learn fixed length representations for playlists and the learned representations can then be used for downstream tasks such as playlist comparison and recommendation.

In this thesis, the problem of learning a fixed-length representation is formulated in an unsupervised manner, using Neural Machine Translation (NMT), where playlists are interpreted as sentences and songs as words. This approach is compared with other encoding architectures and evaluated using the suite of tasks commonly used for evaluating sentence embeddings, along with a few additional tasks pertaining to music. The aim of the evaluation is to study the traits captured by the playlist embeddings such that these can be leveraged for music recommendation purposes. This work lays down the foundation for analyzing music playlists and learning the patterns that exist in the playlists in an end-to-end manner. This thesis finally concludes with a discussion on the future direction for this research and its potential impact in the domain of Music Information Retrieval.
Date Created
2019
Agent

Decision Support for Crew Scheduling using Automated Planning

157313-Thumbnail Image.png
Description
Allocating tasks for a day's or week's schedule is known to be a challenging and difficult problem. The problem intensifies by many folds in multi-agent settings. A planner or group of planners who decide such kind of task association schedule

Allocating tasks for a day's or week's schedule is known to be a challenging and difficult problem. The problem intensifies by many folds in multi-agent settings. A planner or group of planners who decide such kind of task association schedule must have a comprehensive perspective on (1) the entire array of tasks to be scheduled (2) idea on constraints like importance cum order of tasks and (3) the individual abilities of the operators. One example of such kind of scheduling is the crew scheduling done for astronauts who will spend time at International Space Station (ISS). The schedule for the crew of ISS is decided before the mission starts. Human planners take part in the decision-making process to determine the timing of activities for multiple days for multiple crew members at ISS. Given the unpredictability of individual assignments and limitations identified with the various operators, deciding upon a satisfactory timetable is a challenging task. The objective of the current work is to develop an automated decision assistant that would assist human planners in coming up with an acceptable task schedule for the crew. At the same time, the decision assistant will also ensure that human planners are always in the driver's seat throughout this process of decision-making.

The decision assistant will make use of automated planning technology to assist human planners. The guidelines of Naturalistic Decision Making (NDM) and the Human-In-The -Loop decision making were followed to make sure that the human is always in the driver's seat. The use cases considered are standard situations which come up during decision-making in crew-scheduling. The effectiveness of automated decision assistance was evaluated by setting it up for domain experts on a comparable domain of scheduling courses for master students. The results of the user study evaluating the effectiveness of automated decision support were subsequently published.
Date Created
2019
Agent