On K-derived quartics and invariants of local fields
Description
This dissertation will cover two topics. For the first, let $K$ be a number field. A $K$-derived polynomial $f(x) \in K[x]$ is a polynomial that
factors into linear factors over $K$, as do all of its derivatives. Such a polynomial
is said to be {\it proper} if
its roots are distinct. An unresolved question in the literature is
whether or not there exists a proper $\Q$-derived polynomial of degree 4. Some examples
are known of proper $K$-derived quartics for a quadratic number field $K$, although other
than $\Q(\sqrt{3})$, these fields have quite large discriminant. (The second known field
is $\Q(\sqrt{3441})$.) I will describe a search for quadratic fields $K$
over which there exist proper $K$-derived quartics. The search finds examples for
$K=\Q(\sqrt{D})$ with $D=...,-95,-41,-19,21,31,89,...$.\\
For the second topic, by Krasner's lemma there exist a finite number of degree $n$ extensions of $\Q_p$. Jones and Roberts have developed a database recording invariants of $p$-adic extensions for low degree $n$. I will contribute data to this database by computing the Galois slope content, inertia subgroup, and Galois mean slope for a variety of wildly ramified extensions of composite degree using the idea of \emph{global splitting models}.
factors into linear factors over $K$, as do all of its derivatives. Such a polynomial
is said to be {\it proper} if
its roots are distinct. An unresolved question in the literature is
whether or not there exists a proper $\Q$-derived polynomial of degree 4. Some examples
are known of proper $K$-derived quartics for a quadratic number field $K$, although other
than $\Q(\sqrt{3})$, these fields have quite large discriminant. (The second known field
is $\Q(\sqrt{3441})$.) I will describe a search for quadratic fields $K$
over which there exist proper $K$-derived quartics. The search finds examples for
$K=\Q(\sqrt{D})$ with $D=...,-95,-41,-19,21,31,89,...$.\\
For the second topic, by Krasner's lemma there exist a finite number of degree $n$ extensions of $\Q_p$. Jones and Roberts have developed a database recording invariants of $p$-adic extensions for low degree $n$. I will contribute data to this database by computing the Galois slope content, inertia subgroup, and Galois mean slope for a variety of wildly ramified extensions of composite degree using the idea of \emph{global splitting models}.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2019
Agent
- Author (aut): Carrillo, Benjamin
- Thesis advisor (ths): Jones, John
- Thesis advisor (ths): Bremner, Andrew
- Committee member: Childress, Nancy
- Committee member: Fishel, Susanna
- Committee member: Kaliszewski, Steven
- Publisher (pbl): Arizona State University