Peg Forest Rehabilitation Mitigates the Onset of Injury-Induced Cognitive Disability in Juvenile Rats

131112-Thumbnail Image.png
Description
Traumatic brain injury (TBI)—sudden impact or acceleration trauma to the head—is a major cause of death and disability worldwide and is particularly amplified in pediatric cases. TBI is the leading cause of mortality and morbidity in children and adolescents. Adolescence

Traumatic brain injury (TBI)—sudden impact or acceleration trauma to the head—is a major cause of death and disability worldwide and is particularly amplified in pediatric cases. TBI is the leading cause of mortality and morbidity in children and adolescents. Adolescence is a critical time where the brain undergoes cognitive development and brain injury-induced disruptions to these processes can lead to life-long debilitating morbidities. The aim of this study was to determine if exercising spatial and contextual memory circuits using a novel rehabilitation strategy called Peg Forest Rehabilitation (PFR) could mitigate the onset of injury-induced cognitive deficits in juvenile rats subjected to diffuse TBI. The PFR aims to synthesize neuroplasticity-based enrichment to improve cognitive outcomes after TBI. We hypothesized that PFR treatment would mitigate the onset of brain injury-induced cognitive deficits and reduce neuroinflammation. Juvenile male Sprague-Dawley rats (post-natal day 35) were subjected to diffuse traumatic brain injury via midline fluid percussion injury or a control surgery. One-week post-injury, rats were exposed to PFR or cage control exploration (15 min/day). PFR allowed free navigation through random configuration of the peg-filled arena for 10 days over 2 weeks. Control rats remained in home cages in the center of the arena with the peg-board removed for 15 min/day/10 days. One-week post-rehabilitation (one-month post-injury), cognitive performance was assessed for short-term (novel object recognition; NOR), long-term (novel location recognition; NLR), and working (temporal order recognition; TOR) memory performance, calculated as a discrimination index between novel and familiar objects. Tissue was collected for immunohistochemistry and stained for ionized calcium binding proteins (Iba-1) to visualize microglia morphology, and somatostatin. PFR attenuated TBI-induced deficits on the NOR task, where the TBI-PFR treatment group spent significantly more time with the novel object compared with the familiar (*p=0.0046). Regardless of rehabilitation, brain-injured rats had hyper-ramified microglia in the hypothalamus indicated by longer branch lengths and more endpoints per cell compared with uninjured shams. Analysis of somatostatin data is ongoing. In this study, passive, intermittent PFR that involved dynamic, novel spatial navigation, prevented TBI-induced cognitive impairment in adolescent rats. Spatial navigation training may have clinical efficacy and should be further investigated.
Date Created
2020-05
Agent

Mechanisms of recovery from chronic stress

156111-Thumbnail Image.png
Description
Chronic stress results in functional and structural changes to the hippocampus. Decades of research has led to insights into the mechanisms underlying the chronic stress-induced deficits in hippocampal-mediated cognition and reduction of dendritic complexity of hippocampal neurons. Recently, a considerable

Chronic stress results in functional and structural changes to the hippocampus. Decades of research has led to insights into the mechanisms underlying the chronic stress-induced deficits in hippocampal-mediated cognition and reduction of dendritic complexity of hippocampal neurons. Recently, a considerable focus of chronic stress research has investigated the mechanisms behind the improvements in hippocampal mediated cognition when chronic stress ends and a post-stress rest period is given. Consequently, the goal of this dissertation is to uncover the mechanisms that allow for spatial ability to improve in the aftermath of chronic stress. In chapter 2, the protein brain derived neurotrophic factor (BDNF) was investigated as a mechanism that allows for spatial ability to show improvements following the end of chronic stress. It was found that decreasing the expression of BDNF in the hippocampus prevented spatial memory improvements following a post-stress rest period. Chapter 3 was performed to determine whether hippocampal CA3 apical dendritic complexity requires BDNF to show improvements following a post-stress rest period, and whether a receptor for BDNF, TrkB, mediates the improvements of spatial ability and dendritic complexity in a temporal manner, i.e. during the rest period only. These experiments showed that decreased hippocampal BDNF expression prevented improvements in dendritic complexity, and administration of a TrkB antagonist during the rest period also prevented the improvements in spatial ability and dendritic complexity. In chapter 4, the role of the GABAergic system on spatial ability following chronic stress and a post-stress rest period was investigated. Following chronic stress, it was found that male rats showed impairments on the acquisition phase of the RAWM and this correlated with limbic glutamic acid decarboxylase, a marker for GABA. In chapter 5, a transgenic mouse that expresses a permanent marker on all GABAergic interneurons was used to assess the effects of chronic stress and a post-stress rest period on hippocampal GABAergic neurons. While no changes were found on the total number of GABAergic interneurons, specific subtypes of GABAergic interneurons were affected by stressor manipulations. Collectively, these studies reveal some mechanisms behind the plasticity seen in the hippocampus in response to a post-stress rest period.
Date Created
2018
Agent

Neuroinflammation Following Experimental Diffuse Brain Injury in Pre-pubertal and Peri-pubertal Rats

133594-Thumbnail Image.png
Description
Traumatic brain injury is the leading cause of mortality and morbidity in children and adolescents. Adolescence is a critical time in development where the body and brain undergoes puberty, which not only includes reproductive maturation, but also adult social and

Traumatic brain injury is the leading cause of mortality and morbidity in children and adolescents. Adolescence is a critical time in development where the body and brain undergoes puberty, which not only includes reproductive maturation, but also adult social and cognitive development. Brain-injury-induced disruptions can cause secondary inflammation processes and as a result, pediatric TBI can lead to significant life-long and debilitating morbidities that continue long after initial injury. In this study, neuroinflammation following diffuse brain injury was explored in prepubertal and peripubertal rats using an adapted method of midline fluid percussion injury (mFPI) for juvenile rats to further understand the relationship between pediatric TBI and puberty disruption due to endocrine dysfunction. We expect the adapted mFPI model to be effective in producing diffuse, moderate brain injury in juvenile rats and hypothesize that pre-pubertal rats (PND35) will have increased neuroinflammation compared to peri-pubertal rats (PND17) and shams because of the potential neuroprotective nature of sex steroids. Male Sprague-Dawley rats (n=90) were subjected to either a diffuse midline fluid percussion injury (mFPI) or sham injury at post-natal day (PND) 17 (pre-puberty) or PND35 (peri-puberty). Animals were sacrificed at different time points defined as days post injury (DPI) including 1DPI, 7DPI and 25DPI to represent both acute and chronic time points, allowing for comparisons within groups (injury vs. sham) and across groups (PND17 vs PND35). Body weight of the rats was measured postoperatively at various time points throughout the study to follow recovery. Tissue was collected and subjected to Heamatoxylin and Eosin (H&E) stain to visualize histology and evaluate the application of diffuse mFPI to juvenile rats. In addition, tissue underwent immunohistochemical analysis using 3,3'-diaminobenzidine (DAB) to stain for ionized calcium binding proteins (Iba1) in order to assess injury-related neuroinflammation in the form of microglia activation. Diffuse brain injury using the mFPI model did not affect rat body weight or cause overt cell death, suggesting adaption of the adult mFPI model for juvenile rats is representative of moderate diffuse brain injury. In addition, diffuse TBI lead to morphological changes in microglia suggesting there is an increased inflammatory response following initial insult, which may directly contribute to improper activation of pubertal timing and progression in adolescent children affected. Since there is little literature on the full effects of puberty dysfunction following TBI in the pediatric population, there is a significant need to further assess this area in order to develop improved interventions and potential therapies for this affected population.
Date Created
2018-05
Agent

Investigating the relationship between CA3 dendritic restructuring and CA1 dendritic complexity following chronic stress, BDNF downregulation, and a post-stress recovery period

134795-Thumbnail Image.png
Description
Chronic restraint stress leads to apical dendritic retraction in CA3 pyramidal neurons and often no quantifiable changes in CA1 dendritic complexity. When chronic stress ends, a post-stress recovery period results in an enhancement in CA3 dendritic complexity. We investigated the

Chronic restraint stress leads to apical dendritic retraction in CA3 pyramidal neurons and often no quantifiable changes in CA1 dendritic complexity. When chronic stress ends, a post-stress recovery period results in an enhancement in CA3 dendritic complexity. We investigated the relationship between CA3 and CA1 pyramidal neurons to determine whether dendritic restructuring in CA3 neurons leads to region-specific changes in the dendritic complexity of CA1 neurons. Adult male Sprague-Dawley rats were restrained (wire mesh, 6h/d/21d) and brains were removed soon after restraint ended (Str-Imm) or after a 21d post-stress recovery period (Str-Rec). In addition, BDNF downregulation targeting the CA3 region prevents enhancement in dendritic complexity following recovery in chronically stressed rats, providing robust conditions to investigate the CA3-CA1 relationship. Consequently, rats were infused into the CA3 area with either an AAV vector with a coding sequence against BDNF (shRNA) or a sequence with no known mRNA complements (Scr). Apical and basal dendritic complexity of CA3 and CA1 was quantified by counting total dendritic bifurcations and dendritic intersections using the Sholl analysis (20 µm distances from soma). Please note that the quantification of the CA3 dendritic arbors was not part of this thesis project. The outcome of that investigation revealed that apical CA3 dendritic retraction was found in Str-Imm-Scr and Str-Rec-shRNA. For the CA1 apical area, gross dendritic bifurcation differences were not detected, but the Sholl quantification revealed regionally-enhanced dendritic complexity that varied by distance from the soma at the distal apical dendrites (Str-Imm-Scr) and proximal basal dendrites (Str-Rec-shRNA). For the latter, significant increases in basal branch points were detected with total branch point quantification method. Moreover, a correlation using all groups revealed a significant inverse relationship between CA3 apical dendritic complexity and CA1 basal dendritic complexity. The results demonstrate that chronic stress-induced CA3 apical dendritic retraction may relate to region-specific changes in CA1 dendritic complexity. The inability of past studies to detect changes in CA1 dendritic complexity may be due to the shortcoming of gross dendritic arbor measures in accounting for subtle region-specific alterations. To address this, the current study included a cohort with BDNF downregulated in the CA3 region. Overall, this suggests that decreased levels of BDNF in the hippocampus provide robust conditions in which changes to CA1 dendritic complexity can be detected.
Date Created
2016-12
Agent

Does an extended washout period of six weeks following the end of chronic stress continue the benefits on spatial learning and memory?

134581-Thumbnail Image.png
Description
Chronic stress often leads to cognitive deficits, especially within the spatial memory domain mediated by the hippocampus. When chronic stress ends and a no-stress period ensues (i.e., washout, WO), spatial ability improves, which can be better than non-stressed controls (CON).

Chronic stress often leads to cognitive deficits, especially within the spatial memory domain mediated by the hippocampus. When chronic stress ends and a no-stress period ensues (i.e., washout, WO), spatial ability improves, which can be better than non-stressed controls (CON). The WO period is often the same duration as the chronic stress paradigm. Given the potential benefit of a post-stress WO period on cognition, it is important to investigate whether this potential benefit of a post-stress WO period has long-lasting effects. In this project, chronic restraint (6hr/d/21d) in Sprague-Dawley rats was used, as it is the minimum duration necessary to observe spatial memory deficits. Two durations of post-stress WO were used following the end of chronic restraint, 3 weeks (STR-WO3) and 6 weeks (STR-WO6). Immediately after chronic stress (STR-IMM) or the WO periods, rats were tested on various cognitive tests. We corroborated past studies that chronic stress impaired spatial memory (STR-IMM vs CON). Interestingly, STR-WO3 and STR-WO6 failed to demonstrate improved spatial memory on a radial arm water maze task, performing similarly as STR-IMM. Performance outcomes were unlikely from differences in anxiety or motivation because rats from all conditions performed similarly on an open field task and on a simple object recognition paradigm, respectively. However, performance on object placement was unusual in that very few rats explored, suggesting some degree of anxiety or fear in all groups. One possible interpretation of the unusual results of the 3 week washout group may be attributed to the different spatial memory tasks used across studies or external factors from the study. Further exploration of these other factors led to the conclusion that they did not play a role and the STR-WO3 RAWM data were anomalous to other studies. This suggests that a washout period following chronic stress may not be fully understood.
Date Created
2017-05
Agent

Hippocampal BDNF mediates recovery from chronic stress-induced spatial reference memory deficits

152286-Thumbnail Image.png
Description
Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory

Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the hippocampus with adeno- associated viral vectors containing the coding sequence for short interfering (si)RNA directed against BDNF or a scrambled sequence (Scr), with both containing the coding information for green fluorescent protein to aid in anatomical localization. Rats were then chronically restrained (wire mesh, 6h/d/21d) and assessed for spatial learning and memory using a radial arm water maze (RAWM) either immediately after stressor cessation (Str-Imm) or following a 21-day post-stress recovery period (Str-Rec). All groups learned the RAWM task similarly, but differed on the memory retention trial. Rats in the Str-Imm group, regardless of viral vector contents, committed more errors in the spatial reference memory domain than did non-stressed controls. Importantly, the typical improvement in spatial memory following recovery from chronic stress was blocked with the siRNA against BDNF, as Str-Rec-siRNA performed worse on the RAWM compared to the non-stressed controls or Str-Rec-Scr. These effects were specific for the reference memory domain as repeated entry errors that reflect spatial working memory were unaffected by stress condition or viral vector contents. These results demonstrate that hippocampal BDNF is necessary for the recovery from stress-induced hippocampal dependent spatial memory deficits in the reference memory domain.
Date Created
2013
Agent