Classication for Conservation: A Random Forest Model to Predict Threatened Marine Species

133732-Thumbnail Image.png
Description
As threats to Earth's biodiversity continue to evolve, an effective methodology to predict such threats is crucial to ensure the survival of living species. Organizations like the International Union for Conservation of Nature (IUCN) monitor the Earth's environmental networks to

As threats to Earth's biodiversity continue to evolve, an effective methodology to predict such threats is crucial to ensure the survival of living species. Organizations like the International Union for Conservation of Nature (IUCN) monitor the Earth's environmental networks to preserve the sanctity of terrestrial and marine life. The IUCN Red List of Threatened Species informs the conservation activities of governments as a world standard of species' risks of extinction. However, the IUCN's current methodology is, in some ways, inefficient given the immense volume of Earth's species and the laboriousness of its species' risk classification process. IUCN assessors can take years to classify a species' extinction risk, even as that species continues to decline. Therefore, to supplement the IUCN's classification process and thus bolster conservationist efforts for threatened species, a Random Forest model was constructed, trained on a group of fish species previously classified by the IUCN Red List. This Random Forest model both validates the IUCN Red List's classification method and offers a highly efficient, supplemental classification method for species' extinction risk. In addition, this Random Forest model is applicable to species with deficient data, which the IUCN Red List is otherwise unable to classify, thus engendering conservationist efforts for previously obscure species. Although this Random Forest model is built specifically for the trained fish species (Sparidae), the methodology can and should be extended to additional species.
Date Created
2018-05
Agent

IUCN Red List Assessment of Muraenidae

133855-Thumbnail Image.png
Description
The International Union for Conservation of Nature's Red List of Threatened Species is the most comprehensive and objective global approach to evaluate the conservation status of species by categorizing species based on relative extinction risk. For the Global Muranidae IUCN

The International Union for Conservation of Nature's Red List of Threatened Species is the most comprehensive and objective global approach to evaluate the conservation status of species by categorizing species based on relative extinction risk. For the Global Muranidae IUCN Red List assessment, all known, taxonomically valid species of Muraenidae were assessed for their extinction risk using the IUCN Red List Global Categories and Criteria. Of all 208 Muraenidae species, it was concluded that 86% of species qualified for Least Concern, 13% of species are Data Deficient, and 1% of species qualified for a threatened category. Channomuraena bauchotae is listed as threatened under VU D2 and Gymnothorax parini qualified for VU B2ab(iii). This study will have brought the International Union for the Conservation of Nature one step closer to their goal of conducting Red List assessments of all the world's species(not including microorganisms). Future implications of this study may include future monitoring of key habitat areas and species or conducting further research to gain a more in depth understanding of the life history and threats to Muraenidae.
Date Created
2018-05
Agent

Flame retardant chemical contamination of seafood, ecologically sustainable fisheries, and significance for biodiversity conservation

153694-Thumbnail Image.png
Description
Consumption of seafood poses a substantial threat to global biodiversity. Chemical contamination found in both wild-caught and farmed seafood also presents significant health risks to consumers. Flame retardants, used in textiles, upholstery, plastics, and other products to reduce risk of

Consumption of seafood poses a substantial threat to global biodiversity. Chemical contamination found in both wild-caught and farmed seafood also presents significant health risks to consumers. Flame retardants, used in textiles, upholstery, plastics, and other products to reduce risk of fire-related injury, are of particular concern as they are commonly found in the marine environment and permeate the tissues of fish that are sold for consumption via multiple pathways. The widespread issue of fishery collapse could be alleviated by demonstrating to stakeholders that many unsustainable fish stocks are also unhealthy and mutually disadvantageous for both human consumers and the environment. To thoroughly investigate the confounding factors and contradictory signals enmeshed in the relationship between ecologically sustainable fisheries and flame retardant contamination, I examined the biological characteristics of regional fish stocks which drive both contamination and perceived sustainability. I found that the biological and spatial aspects of commonly consumed aquatic and marine species best predict contamination when compared with various indices of sustainability. My results confirm that knowledge of flame retardant toxicity will become increasingly more important to consumers because a high percentage of global populations rely on coastal seafood for subsistence, and although dispersal of chemical contamination is still a poorly understood phenomenon, fish harvested closer to land are likely to contain higher concentrations of potentially harmful chemicals. Because some of the same biological traits which facilitate the uptake of chemicals also contribute to how a species responds to fishing pressures, concern for private health increases public consideration for the conservation of species at risk.
Date Created
2015
Agent