Statistical properties of the single mediator model with latent variables in the bayesian framework

155670-Thumbnail Image.png
Description
Statistical mediation analysis has been widely used in the social sciences in order to examine the indirect effects of an independent variable on a dependent variable. The statistical properties of the single mediator model with manifest and latent variables have

Statistical mediation analysis has been widely used in the social sciences in order to examine the indirect effects of an independent variable on a dependent variable. The statistical properties of the single mediator model with manifest and latent variables have been studied using simulation studies. However, the single mediator model with latent variables in the Bayesian framework with various accurate and inaccurate priors for structural and measurement model parameters has yet to be evaluated in a statistical simulation. This dissertation outlines the steps in the estimation of a single mediator model with latent variables as a Bayesian structural equation model (SEM). A Monte Carlo study is carried out in order to examine the statistical properties of point and interval summaries for the mediated effect in the Bayesian latent variable single mediator model with prior distributions with varying degrees of accuracy and informativeness. Bayesian methods with diffuse priors have equally good statistical properties as Maximum Likelihood (ML) and the distribution of the product. With accurate informative priors Bayesian methods can increase power up to 25% and decrease interval width up to 24%. With inaccurate informative priors the point summaries of the mediated effect are more biased than ML estimates, and the bias is higher if the inaccuracy occurs in priors for structural parameters than in priors for measurement model parameters. Findings from the Monte Carlo study are generalizable to Bayesian analyses with priors of the same distributional forms that have comparable amounts of (in)accuracy and informativeness to priors evaluated in the Monte Carlo study.
Date Created
2017
Agent

Performance of contextual multilevel models for comparing between-person and within-person effects

154939-Thumbnail Image.png
Description
The comparison of between- versus within-person relations addresses a central issue in psychological research regarding whether group-level relations among variables generalize to individual group members. Between- and within-person effects may differ in magnitude as well as direction, and contextual multilevel

The comparison of between- versus within-person relations addresses a central issue in psychological research regarding whether group-level relations among variables generalize to individual group members. Between- and within-person effects may differ in magnitude as well as direction, and contextual multilevel models can accommodate this difference. Contextual multilevel models have been explicated mostly for cross-sectional data, but they can also be applied to longitudinal data where level-1 effects represent within-person relations and level-2 effects represent between-person relations. With longitudinal data, estimating the contextual effect allows direct evaluation of whether between-person and within-person effects differ. Furthermore, these models, unlike single-level models, permit individual differences by allowing within-person slopes to vary across individuals. This study examined the statistical performance of the contextual model with a random slope for longitudinal within-person fluctuation data.

A Monte Carlo simulation was used to generate data based on the contextual multilevel model, where sample size, effect size, and intraclass correlation (ICC) of the predictor variable were varied. The effects of simulation factors on parameter bias, parameter variability, and standard error accuracy were assessed. Parameter estimates were in general unbiased. Power to detect the slope variance and contextual effect was over 80% for most conditions, except some of the smaller sample size conditions. Type I error rates for the contextual effect were also high for some of the smaller sample size conditions. Conclusions and future directions are discussed.
Date Created
2016
Agent

Sensitivity analysis of longitudinal measurement non-invariance: a second-order latent growth model approach with ordered-categorical indicators

154781-Thumbnail Image.png
Description
Researchers who conduct longitudinal studies are inherently interested in studying individual and population changes over time (e.g., mathematics achievement, subjective well-being). To answer such research questions, models of change (e.g., growth models) make the assumption of longitudinal measurement invariance. In

Researchers who conduct longitudinal studies are inherently interested in studying individual and population changes over time (e.g., mathematics achievement, subjective well-being). To answer such research questions, models of change (e.g., growth models) make the assumption of longitudinal measurement invariance. In many applied situations, key constructs are measured by a collection of ordered-categorical indicators (e.g., Likert scale items). To evaluate longitudinal measurement invariance with ordered-categorical indicators, a set of hierarchical models can be sequentially tested and compared. If the statistical tests of measurement invariance fail to be supported for one of the models, it is useful to have a method with which to gauge the practical significance of the differences in measurement model parameters over time. Drawing on studies of latent growth models and second-order latent growth models with continuous indicators (e.g., Kim & Willson, 2014a; 2014b; Leite, 2007; Wirth, 2008), this study examined the performance of a potential sensitivity analysis to gauge the practical significance of violations of longitudinal measurement invariance for ordered-categorical indicators using second-order latent growth models. The change in the estimate of the second-order growth parameters following the addition of an incorrect level of measurement invariance constraints at the first-order level was used as an effect size for measurement non-invariance. This study investigated how sensitive the proposed sensitivity analysis was to different locations of non-invariance (i.e., non-invariance in the factor loadings, the thresholds, and the unique factor variances) given a sufficient sample size. This study also examined whether the sensitivity of the proposed sensitivity analysis depended on a number of other factors including the magnitude of non-invariance, the number of non-invariant indicators, the number of non-invariant occasions, and the number of response categories in the indicators.
Date Created
2016
Agent

Investigating adverse effects of adolescent group interventions

154292-Thumbnail Image.png
Description
This study examined an adverse effect of an adolescent group intervention. Group interventions represent one of the most economical, convenient, and common solution to adolescent behavior problems, although prior findings from program evaluation studies have suggested that these groups can

This study examined an adverse effect of an adolescent group intervention. Group interventions represent one of the most economical, convenient, and common solution to adolescent behavior problems, although prior findings from program evaluation studies have suggested that these groups can unexpectedly increase the externalizing behaviors that they were designed to reduce or prevent. The current study used data from a longitudinal, randomized controlled trial of the Bridges to High School / Puentes a La Secundaria Program, a multicomponent prevention program designed to reduce risk during the middle school transition, which has demonstrated positive effects across an array of outcomes. Data were collected at the beginning of 7th grade, with follow-up data collected at the end of the 7th, 8th, 9th, and 12th grade from a sample of Mexican American adolescents and their mothers. Analyses evaluated long-term effects on externalizing outcomes, trajectories of externalizing behaviors across adolescence, and potential mediators of observed effects. Results showed that the adverse effect that was originally observed based on adolescent self-report of externalizing symptoms at 1-year posttest among youth with high pretest externalizing symptoms was not maintained over time and was not reflected in changes in adolescents' trajectories of externalizing behaviors. Moreover, neither of the peer mediators that theory suggests would explain adverse effects were found to mediate the relationship between intervention status and externalizing symptoms at 1-year posttest. Finally, only beneficial effects were found on externalizing symptoms based on mother report. Together, these findings suggest that the Bridges intervention did not adversely affect adolescent problem behaviors and that future studies should use caution when interpreting unexpected adverse effects.
Date Created
2015
Agent

Interaction effects in multilevel models

154088-Thumbnail Image.png
Description
Researchers are often interested in estimating interactions in multilevel models, but many researchers assume that the same procedures and interpretations for interactions in single-level models apply to multilevel models. However, estimating interactions in multilevel models is much more complex

Researchers are often interested in estimating interactions in multilevel models, but many researchers assume that the same procedures and interpretations for interactions in single-level models apply to multilevel models. However, estimating interactions in multilevel models is much more complex than in single-level models. Because uncentered (RAS) or grand mean centered (CGM) level-1 predictors in two-level models contain two sources of variability (i.e., within-cluster variability and between-cluster variability), interactions involving RAS or CGM level-1 predictors also contain more than one source of variability. In this Master’s thesis, I use simulations to demonstrate that ignoring the four sources of variability in a total level-1 interaction effect can lead to erroneous conclusions. I explain how to parse a total level-1 interaction effect into four specific interaction effects, derive equivalencies between CGM and centering within context (CWC) for this model, and describe how the interpretations of the fixed effects change under CGM and CWC. Finally, I provide an empirical example using diary data collected from working adults with chronic pain.
Date Created
2015
Agent

Multilevel multiple imputation: an examination of competing methods

153391-Thumbnail Image.png
Description
Missing data are common in psychology research and can lead to bias and reduced power if not properly handled. Multiple imputation is a state-of-the-art missing data method recommended by methodologists. Multiple imputation methods can generally be divided into two broad

Missing data are common in psychology research and can lead to bias and reduced power if not properly handled. Multiple imputation is a state-of-the-art missing data method recommended by methodologists. Multiple imputation methods can generally be divided into two broad categories: joint model (JM) imputation and fully conditional specification (FCS) imputation. JM draws missing values simultaneously for all incomplete variables using a multivariate distribution (e.g., multivariate normal). FCS, on the other hand, imputes variables one at a time, drawing missing values from a series of univariate distributions. In the single-level context, these two approaches have been shown to be equivalent with multivariate normal data. However, less is known about the similarities and differences of these two approaches with multilevel data, and the methodological literature provides no insight into the situations under which the approaches would produce identical results. This document examined five multilevel multiple imputation approaches (three JM methods and two FCS methods) that have been proposed in the literature. An analytic section shows that only two of the methods (one JM method and one FCS method) used imputation models equivalent to a two-level joint population model that contained random intercepts and different associations across levels. The other three methods employed imputation models that differed from the population model primarily in their ability to preserve distinct level-1 and level-2 covariances. I verified the analytic work with computer simulations, and the simulation results also showed that imputation models that failed to preserve level-specific covariances produced biased estimates. The studies also highlighted conditions that exacerbated the amount of bias produced (e.g., bias was greater for conditions with small cluster sizes). The analytic work and simulations lead to a number of practical recommendations for researchers.
Date Created
2015
Agent

Stress, depression, and the mother-infant relationship across the first year

153052-Thumbnail Image.png
Description
Postpartum depression (PPD) is a significant public health concern affecting up to half a million U.S. women annually. Mexican-American women experience substantially higher rates of PPD, and represent an underserved population with significant health disparities that put these women and

Postpartum depression (PPD) is a significant public health concern affecting up to half a million U.S. women annually. Mexican-American women experience substantially higher rates of PPD, and represent an underserved population with significant health disparities that put these women and their infants at greater risk for substantial psychological and developmental difficulties. The current study utilized data on perceived stress, depression, maternal parenting behavior, and infant social-emotional and cognitive development from 214 Mexican-American mother-infant dyads. The first analysis approach utilized a latent intercept (LI) model to examine how overall mean levels and within-person deviations of perceived stress, depressive symptoms, and maternal parenting behavior are related across the postpartum period. Results indicated large, positive between- and within-person correlations between perceived stress and depression. Neither perceived stress nor depressive symptoms were found to have significant between- or within-person associations with the parenting variables. The second analysis approach utilized an autoregressive cross-lagged model with tests of mediation to identify underlying mechanisms among perceived stress, postpartum depressive symptoms, and maternal parenting behavior in the prediction of infant social-emotional and cognitive development. Results indicated that increased depressive symptoms at 12- and 18-weeks were associated with subsequent reports of increased perceived stress at 18- and 24-weeks, respectively. Perceived stress at 12-weeks was found to be negatively associated with subsequent non-hostility at 18-weeks, and both sensitivity and non-hostility were found to be associated with infant cognitive development and social-emotional competencies at 12 months of age (52-weeks), but not with social-emotional problems. The results of the mediation analyses showed that non-hostility at 18- and 24-weeks significantly mediated the association between perceived stress at 12-weeks and infant cognitive development and social-emotional competencies at 52-weeks. The findings extend research that sensitive parenting in early childhood is as important to the development of cognitive ability, social behavior, and emotion regulation in ethnic minority cultures as it is in majority culture families; that maternal perceptions of stress may spillover into parenting behavior, resulting in increased hostility and negatively influencing infant cognitive and social-emotional development; and that symptoms of depressed mood may influence the experience of stress.
Date Created
2014
Agent

Obtaining accurate estimates of the mediated effect with and without prior information

152985-Thumbnail Image.png
Description
Research methods based on the frequentist philosophy use prior information in a priori power calculations and when determining the necessary sample size for the detection of an effect, but not in statistical analyses. Bayesian methods incorporate prior knowledge into the

Research methods based on the frequentist philosophy use prior information in a priori power calculations and when determining the necessary sample size for the detection of an effect, but not in statistical analyses. Bayesian methods incorporate prior knowledge into the statistical analysis in the form of a prior distribution. When prior information about a relationship is available, the estimates obtained could differ drastically depending on the choice of Bayesian or frequentist method. Study 1 in this project compared the performance of five methods for obtaining interval estimates of the mediated effect in terms of coverage, Type I error rate, empirical power, interval imbalance, and interval width at N = 20, 40, 60, 100 and 500. In Study 1, Bayesian methods with informative prior distributions performed almost identically to Bayesian methods with diffuse prior distributions, and had more power than normal theory confidence limits, lower Type I error rates than the percentile bootstrap, and coverage, interval width, and imbalance comparable to normal theory, percentile bootstrap, and the bias-corrected bootstrap confidence limits. Study 2 evaluated if a Bayesian method with true parameter values as prior information outperforms the other methods. The findings indicate that with true values of parameters as the prior information, Bayesian credibility intervals with informative prior distributions have more power, less imbalance, and narrower intervals than Bayesian credibility intervals with diffuse prior distributions, normal theory, percentile bootstrap, and bias-corrected bootstrap confidence limits. Study 3 examined how much power increases when increasing the precision of the prior distribution by a factor of ten for either the action or the conceptual path in mediation analysis. Power generally increases with increases in precision but there are many sample size and parameter value combinations where precision increases by a factor of 10 do not lead to substantial increases in power.
Date Created
2014
Agent

Impact of violations of longitudinal measurement invariance in latent growth models and autoregressive quasi-simplex models

152032-Thumbnail Image.png
Description
In order to analyze data from an instrument administered at multiple time points it is a common practice to form composites of the items at each wave and to fit a longitudinal model to the composites. The advantage of using

In order to analyze data from an instrument administered at multiple time points it is a common practice to form composites of the items at each wave and to fit a longitudinal model to the composites. The advantage of using composites of items is that smaller sample sizes are required in contrast to second order models that include the measurement and the structural relationships among the variables. However, the use of composites assumes that longitudinal measurement invariance holds; that is, it is assumed that that the relationships among the items and the latent variables remain constant over time. Previous studies conducted on latent growth models (LGM) have shown that when longitudinal metric invariance is violated, the parameter estimates are biased and that mistaken conclusions about growth can be made. The purpose of the current study was to examine the impact of non-invariant loadings and non-invariant intercepts on two longitudinal models: the LGM and the autoregressive quasi-simplex model (AR quasi-simplex). A second purpose was to determine if there are conditions in which researchers can reach adequate conclusions about stability and growth even in the presence of violations of invariance. A Monte Carlo simulation study was conducted to achieve the purposes. The method consisted of generating items under a linear curve of factors model (COFM) or under the AR quasi-simplex. Composites of the items were formed at each time point and analyzed with a linear LGM or an AR quasi-simplex model. The results showed that AR quasi-simplex model yielded biased path coefficients only in the conditions with large violations of invariance. The fit of the AR quasi-simplex was not affected by violations of invariance. In general, the growth parameter estimates of the LGM were biased under violations of invariance. Further, in the presence of non-invariant loadings the rejection rates of the hypothesis of linear growth increased as the proportion of non-invariant items and as the magnitude of violations of invariance increased. A discussion of the results and limitations of the study are provided as well as general recommendations.
Date Created
2013
Agent

Daily diary data: effects of cycles on inferences

151501-Thumbnail Image.png
Description
Daily dairies and other intensive measurement methods are increasingly used to study the relationships between two time varying variables X and Y. These data are commonly analyzed using longitudinal multilevel or bivariate growth curve models that allow for random effects

Daily dairies and other intensive measurement methods are increasingly used to study the relationships between two time varying variables X and Y. These data are commonly analyzed using longitudinal multilevel or bivariate growth curve models that allow for random effects of intercept (and sometimes also slope) but which do not address the effects of weekly cycles in the data. Three Monte Carlo studies investigated the impact of omitting the weekly cycles in daily dairy data under the multilevel model framework. In cases where cycles existed in both the time-varying predictor series (X) and the time-varying outcome series (Y) but were ignored, the effects of the within- and between-person components of X on Y tended to be biased, as were their corresponding standard errors. The direction and magnitude of the bias depended on the phase difference between the cycles in the two series. In cases where cycles existed in only one series but were ignored, the standard errors of the regression coefficients for the within- and between-person components of X tended to be biased, and the direction and magnitude of bias depended on which series contained cyclical components.
Date Created
2013
Agent