Discounting the Future

135011-Thumbnail Image.png
Description
The culture of the 1970s in the United States of America was progressive and revolutionary. Due to various events that were unfavorable to the public, U.S. citizens began to lose trust in their government. Signs of the public's revolt and

The culture of the 1970s in the United States of America was progressive and revolutionary. Due to various events that were unfavorable to the public, U.S. citizens began to lose trust in their government. Signs of the public's revolt and dissention began to show in laws and propositions voters passed. In California, Proposition 13 was one of many anti-tax laws taxpayers voted for to cut back the control of the government. As a result, revenues for public services and improvements decreased and maintenance allocations for infrastructure systems were considerably reduced. Fast-forwarding to today, infrastructure systems in the U.S. are reaching their retirement period and are requiring extreme maintenance and attention. Los Angeles has been experiencing severe water main breaks in its water distribution system for several years now, but the city is lacking funds to replace the aging pipes. The lack of funds paired with aging infrastructure indicates there is a flaw in the forecasting analysis techniques used today to project infrastructure costs. Therefore, an alternative discounting function to the exponential is proposed: the hyperbolic discounting function. A comparative analysis was performed using a hyperbolic and an exponential discounting function. The two functions were calibrated over the course of 50 years and the parameters r and a were determined. Then the discounts were applied to a 50-year expenditure projection for pipe replacements of a water distribution system. The present value was computed with each discount function and results were obtained. By year 50, the hyperbolic function yielded a higher present value of $25.06 million and the exponential function yielded a present value of $14 million. These results lead to the conclusion that the hyperbolic discounting function is the preferred methodology when calculating long-term expenditures, especially those dependent on tax revenue.
Date Created
2016-12
Agent

The Future of the Phoenix Metropolitan Area: An Analysis of the Socioeconomic Implications of Desert, Green, or Expanded Cities

134978-Thumbnail Image.png
Description
As inhabitants of a desert, a sustainable water source has always been and will continue to be a crucial component in developing the cities Arizonans call home. Phoenix and the surrounding municipalities make up a large metropolitan area that continues

As inhabitants of a desert, a sustainable water source has always been and will continue to be a crucial component in developing the cities Arizonans call home. Phoenix and the surrounding municipalities make up a large metropolitan area that continues to grow in spatial size and population. However, as climate change becomes more of an evident challenge, Arizona is forced to plan and make decisions regarding its ability to safely and efficiently maintain its livelihood and/or growth. With the effects of climate change in mind, Arizona will need to continue to innovatively and proactively address issues of water management and the effects of urban heat island (UHI). The objective of this thesis was to study the socioeconomic impacts of four extreme scenarios of the future Phoenix metropolitan area. Each of the scenarios showcased a different hypothetical extreme and uniquely impacted factors related to water management and UHI. The four scenarios were a green city, desert city, expanded city into desert land, and expanded city into agricultural land. These four scenarios were designed to emphasize different aspects of the urban water-energy-population nexus, as the future of the Phoenix metropolitan area is dynamic. Primarily, the Green City and Desert City served as contrasting viewpoints on UHI and water sustainability. The Expanded Cities showed the influence of population growth and land use on water sustainability. The socioeconomic impacts of the four scenarios were then analyzed. The quantitative data of the report was completed using the online user interface of WaterSim 5.0 (a program created by the Decision Center for a Desert City (DCDC) at Arizona State University). The different scenarios were modeled in the program by adjusting various demand and supply oriented factors. The qualitative portion as well as additional quantitative data was acquired through an extensive literature review. It was found that changing land use has direct water use implications; agricultural land overtaken for municipal uses can sustain a population for longer. Though, removing agricultural lands has both social and economic implications, and can actually cause the elimination of an emergency source. Moreover, it was found that outdoor water use and reclaimed wastewater can impact water sustainability. Practices that decrease outdoor water use and increase wastewater reclamation are currently occurring; however, these practices could be augmented. Both practices require changes in the publics' opinions on water use, nevertheless, the technology and policy exists and can be intensified to become more water sustainable. While the scenarios studied were hypothetical cases of the future of the Phoenix metropolitan area, they identified important circumscribing measures and practices that influence the Valley's water resources.
Date Created
2016-12
Agent

An Analysis of Craft Labor Productivity

134875-Thumbnail Image.png
Description
Productivity in the construction industry is an essential measure of production efficiency and economic progress, quantified by craft laborers' time spent directly adding value to a project. In order to better understand craft labor productivity as an aspect of lean

Productivity in the construction industry is an essential measure of production efficiency and economic progress, quantified by craft laborers' time spent directly adding value to a project. In order to better understand craft labor productivity as an aspect of lean construction, an activity analysis was conducted at the Arizona State University Palo Verde Main engineering dormitory construction site in December of 2016. The objective of this analysis on craft labor productivity in construction projects was to gather data regarding the efficiency of craft labor workers, make conclusions about the effects of time of day and other site-specific factors on labor productivity, as well as suggest improvements to implement in the construction process. Analysis suggests that supporting tasks, such as traveling or materials handling, constitute the majority of craft labors' efforts on the job site with the highest percentages occurring at the beginning and end of the work day. Direct work and delays were approximately equal at about 20% each hour with the highest peak occurring at lunchtime between 10:00 am and 11:00 am. The top suggestion to improve construction productivity would be to perform an extensive site utilization analysis due to the confined nature of this job site. Despite the limitations of an activity analysis to provide a complete prospective of all the factors that can affect craft labor productivity as well as the small number of days of data acquisition, this analysis provides a basic overview of the productivity at the Palo Verde Main construction site. Through this research, construction managers can more effectively generate site plans and schedules to increase labor productivity.
Date Created
2016-12
Agent

Educating Students on Water Resources, the Importance of Drinking Water, and the Use of Biomimicry

Description
Clean and accessible drinking water is a crucial and limited resource. As the world's population grows and demand increases, water resources will become more limited. This project aims to educate students on water resources, drinking water, and how biomimicry can

Clean and accessible drinking water is a crucial and limited resource. As the world's population grows and demand increases, water resources will become more limited. This project aims to educate students on water resources, drinking water, and how biomimicry can allow society to improve its water usage. The project consists of a ten day unit plan which addresses several water topics such as: the various uses of water, water distribution, where drinking water comes from, the water treatment process, and more. After establishing background knowledge on water and surrounding issues, the students will be challenged to design a water bottle using biomimicry. Biomimicry is looking at nature to draw and inspire solutions to human problems. This unit has been optimized for use by elementary teachers. The ten day unit consists of a lesson summary, objectives, standards, and recommended activities for each day. Of the ten days, three lesson plans were fully developed using the 5E format. The research supporting this project is compiled in the following report.
Date Created
2016-12
Agent

Effect of Climate Change on Arizona Roadway Drainage Infrastructure

134798-Thumbnail Image.png
Description
There has been much work done predicting the effects of climate change on transportation systems, this research parallels that past work and focuses on the effect of changes in precipitation on roadway drainage systems. On a macro level, this work

There has been much work done predicting the effects of climate change on transportation systems, this research parallels that past work and focuses on the effect of changes in precipitation on roadway drainage systems. On a macro level, this work addresses the process that should be taken to make predictions about the vulnerability of this system due to changes in precipitation. This work also addresses the mechanisms of failure of these drainage systems and how they may be affected by changes in precipitation due to climate change. These changes may entail more frequent failure by certain mechanisms, or a shift in the mechanisms for particular infrastructure. A sample water basin in the urban environment of Phoenix, Arizona is given as a case study. This study looks at the mechanisms of failure of the infrastructure therein, as well as provides a process of analyzing the effects of increases in precipitation to the vulnerability of this infrastructure. It was found that drainage structures at roadways being currently designed will see increases from 20-30% in peak discharge, which will lead to increased frequency of failure.
Date Created
2016-12
Agent

Residential Structural Design

134754-Thumbnail Image.png
Description
The Barrett creative project in residential structural design serves as the culmination of my most meaningful undergraduate experiences and interests. I previously interned for D.R. Horton, a home builder, and spent a significant amount of time on the development sites

The Barrett creative project in residential structural design serves as the culmination of my most meaningful undergraduate experiences and interests. I previously interned for D.R. Horton, a home builder, and spent a significant amount of time on the development sites and in the engineering management office. This experience sparked a curiosity in the design of wood frames for homes and the residential industry as a whole. Since then, I have also had the opportunity to intern for Felten Group, an architecture, engineering, and forensics firm specializing in residential work. A residential roof structure is designed following the American Society of Civil Engineer's Minimum Design Loads for Buildings and Other Structures design code, in addition to the National Design Standards for Wood Construction manual. Although the sub discipline of wooden structural design can often be disregarded as the simplest type of analysis, I believe that it is a key component of an education in structural engineering. Like all aspects of civil engineering, the design of a house is composed of many interconnected systems, which include the balance of structural integrity and cost, functionality and aesthetics, and light and space. For my creative project, I took these ideas into account when designing both the floor plan and roof structure of the house using Revit and RISA, respectively. Well-rounded engineers are not only technically competent, but they also understand the social dimensions of a problem and how all the systems work together. The project focuses on creating a cohesive representation of a structure as a whole and how the individual frames, trusses, and beams interact with one another using RISA, a structural analysis program. With RISA's 3D interface, I have a better understanding of how more complex structures behave, which I have not gained from my 2D perspective in classes. RISA is used to calculate support reactions and the deflections of the trusses, which are checked against the bearing capacities of the supports and deflection design criteria to ensure a safe design. Concepts such as tributary area, truss connections, and the behavior of girder systems are also explored through the process.
Date Created
2016-12
Agent

Urban Heat Island Mitigation Strategies: Phoenix

134749-Thumbnail Image.png
Description
The growing urban heat island (UHI) phenomenon is having detrimental effects on urban populations and the environment, and therefore, must be addressed. The purpose of this research is to investigate possible strategies that could be utilized to reduce the effects

The growing urban heat island (UHI) phenomenon is having detrimental effects on urban populations and the environment, and therefore, must be addressed. The purpose of this research is to investigate possible strategies that could be utilized to reduce the effects of the urban heat island for the city of Phoenix. Current strategies, case studies, and the ENVI-Met modeling software were used to finalize conclusions and suggestions to further progress Phoenix's goals in combating its urban heat island. Results from the studies found that there is much potential in reducing daytime and evening temperatures through improving infrastructure by means of increased vegetation in the forms of green roofs and walls, reducing anthropogenic heat release, improving artificial surface coverage, and implementing lasting policies for further development. Results from the ENVI-met microclimate program shows areas for further research in urban heat island mitigation strategies.
Date Created
2016-12
Agent

Building the Green Hospital: An Analysis of Construction Strategies Contributing to Building Efficiency in the Healthcare Sector

134597-Thumbnail Image.png
Description
Hospitals constitute 9 percent of commercial energy consumption in the U.S. annually, though they only make up 2 percent of the U.S. commercial floor space. Consuming an average of 259,000 Btu per square foot, U.S. hospitals spend about 8.3 billion

Hospitals constitute 9 percent of commercial energy consumption in the U.S. annually, though they only make up 2 percent of the U.S. commercial floor space. Consuming an average of 259,000 Btu per square foot, U.S. hospitals spend about 8.3 billion dollars on energy every year. Utilizing collaborative delivery method for hospital construction can effectively save healthcare business owners thousands of dollars while reducing construction time and resulting in a better product: a building that has fewer operational deficiencies and requires less maintenance. Healthcare systems are integrated by nature, and are rich in technical complexity to meet the needs of their various patients. In addition to being technologically and energy intensive, hospitals must meet health regulations while maintaining human comfort. The interdisciplinary nature of hospitals suggests that multiple perspectives would be valuable in optimizing the building design. Integrated project delivery provides a means to reaching the optimal design by emphasizing group collaboration and expertise of the architect, engineer, owner, builder, and hospital staff. In previous studies, IPD has proven to be particularly beneficial when it comes to highly complex projects, such as hospitals. To assess the effects of a high level of team collaboration in the delivery of a hospital, case studies were prepared on several hospitals that have been built in the past decade. The case studies each utilized some form of a collaborative delivery method, and each were successful in saving and/or redirecting time and money to other building components, achieving various certifications, recognitions, and awards, and satisfying the client. The purpose of this research is to determine key strategies in the construction of healthcare facilities that allow for quicker construction, greater monetary savings, and improved operational efficiency. This research aims to communicate the value of both "green building" and a high level of team collaboration in the hospital-building process.
Date Created
2017-05
Agent

Developing Curriculum to Educate Engineers on Unconscious Bias

134500-Thumbnail Image.png
Description
Engineers spend several years studying intense technical details of the processes that shape our world, yet few are exposed to classes addressing social behaviors or issues. Engineering culture creates specific barriers to addressing social science issues, such as unconscious bias,

Engineers spend several years studying intense technical details of the processes that shape our world, yet few are exposed to classes addressing social behaviors or issues. Engineering culture creates specific barriers to addressing social science issues, such as unconscious bias, within engineering classrooms. I developed a curriculum that uses optical illusions, Legos, and the instructor's vulnerability to tackle unconscious bias in a way that addresses the barriers in engineering culture that prevent engineers from learning social science issues. Unconscious bias has documented long-term negative impacts on success and personal development, even in engineering environments. Creating a module in engineering education that addresses unconscious bias with the aim of reducing the negative effects of bias would benefit developing engineers by improving product development and team diversity. Engineering culture fosters disengagement with social issues through three pillars: depoliticization, technical/social dualism, and meritocracy. The developed curriculum uses optical illusions and Legos as proxies to start discussions about unconscious bias. The proxies allow engineers to explore their own biases without running into one of the pillars of disengagement that limits the engineer's willingness to discuss social issues. The curriculum was implemented in the Fall of 2017 in an upper-division engineering classroom as a professional communication module. The module received qualitatively positive feedback from fellow instructors and students. The curriculum was only implemented once by the author, but future implementations should be done with a different instructor and using quantitative data to measure if the learning objectives were achieved. Appendix A of the paper contains a lesson plan of the module that could be implemented by other instructors.
Date Created
2017-05
Agent

SLICE: Sustainable PV Waste Alternative

134474-Thumbnail Image.png
Description
The problem is that children in developing countries are doing our dirty work. Electronic waste that end up in landfills in these developing countries pose a danger to the children extracting metals that are then resold in local markets. The

The problem is that children in developing countries are doing our dirty work. Electronic waste that end up in landfills in these developing countries pose a danger to the children extracting metals that are then resold in local markets. The dumping of solar panels in these landfills is sometimes the only alternative for some manufactures because there is no viable option for silicon wafers. Solar panel installations started to peak in the early 1990's . With the lifespan of a solar panel being 25 years, recycling these panel is not a priority task in government policies. First Solar is currently the only company in the United States that executes the full recycling process. However, there is an environmental hotspot and an energy intensity phase identified in their process. The second stage in First Solar's recycling method consist of hammering and shredding the solar panel to reduce the surface area to then move on the chemical path stage. This stage currently uses 1.1 kWh for a meter by meter solar cell. A thermal processing method was explored and found to be the most environmentally conscious chose in terms of emissions and energy cost. The thermal method uses a conventional furnace to burn away the EVA, leaving the internal components of the cell intact and ready for the remaining process of recycling. SLICE method aims to introduce an industry tailored, low energy cost process, that initiates a solar panel recycling infrastructure in the United States. The recycling infrastructure is needed to sustain the exponential growth of solar panels and avoid third party recycling to developing countries. This new method transitions from lab tested batch processes to a continuous process.
Date Created
2017-05
Agent