The Evaluation of Algae-Derived Activated Carbon Adsorbents for Direct CO2 Capture from Ambient Air

147875-Thumbnail Image.png
Description

Temperature swing adsorption is a commonly used gas separation technique, and is being<br/>further researched as a method of carbon capture. Carbon capture is becoming increasingly<br/>important as a potential way to slow global warming. In this study, algae-derived activated<br/>carbon adsorbents were

Temperature swing adsorption is a commonly used gas separation technique, and is being<br/>further researched as a method of carbon capture. Carbon capture is becoming increasingly<br/>important as a potential way to slow global warming. In this study, algae-derived activated<br/>carbon adsorbents were analyzed for their carbon dioxide adsorption effectiveness.<br/>Algae-derived carbon adsorbents were synthesized and then studied for their adsorption<br/>isotherms and adsorption breakthrough behavior. From the generated isotherm plots, it was<br/>determined that the carbonization temperature was not high enough and that more batches of<br/>adsorbent would have to be made to more accurately analyze the adsorptive potential of the<br/>algae-derived carbon adsorbent.

Date Created
2021-05
Agent

VirusFreeSports: Planting the Seed for Improving Public Health by Creating a Prototype/Initial Concept For Safety Licensing for Sports Organizations

147960-Thumbnail Image.png
Description

The ongoing Global Coronavirus Pandemic has been upheving social norms for over a year at this point. For countless people, our lives look very different at this point in time than they did before the pandemic began. Quarantine, Shelter in

The ongoing Global Coronavirus Pandemic has been upheving social norms for over a year at this point. For countless people, our lives look very different at this point in time than they did before the pandemic began. Quarantine, Shelter in Place, Work from Home, and Online classes have led global populations to become less active leading to an increase in sedentary lifestyles. The final impact of this consequence is unknown, but emerging studies have led to concrete evidence of decreased physical and mental wellbeing, particularly in children. VirusFreeSports was the brainchild of three ASU Honors students who sought to remedy these devastating consequences by creating environments where children can participate in sports and exercise safely, free of the threat COVID-19 or other transmissible illnesses. The ultimate goal for the project team was to build traction for their idea, which culminated in a video pitch sent to potential investors. Although largely created as an exercise and we did not create a full certification course, merely a prototype through a website with sample questions to gauge interest, the project was a success as a large target market for this product was identified that showed great promise. Our team believes that early entrance to the market, as well as the lack of any other competitors would give the team a tremendous advantage in creating an impactful and influential service.

Date Created
2021-05
Agent

Analysis of Various Renewable Energy Systems as a Potential Replacement to Industrial Diesel Engine Systems [CLOSED DEFENSE]

148009-Thumbnail Image.png
Description

This thesis explores the investigation of the project “Designing for a Post-Diesel Engine World”, a collaborative experiment between organizations within Arizona State University and an undisclosed company. This investigation includes the analysis of various renewable energy technologies and their potential

This thesis explores the investigation of the project “Designing for a Post-Diesel Engine World”, a collaborative experiment between organizations within Arizona State University and an undisclosed company. This investigation includes the analysis of various renewable energy technologies and their potential to replace industrial diesel engines as used in the company’s business. In order to be competitive with diesel engines, the technology should match or exceed diesel in power output, have reduced environmental impact, and meet other criteria standards as determined by the company. The team defined the final selection criteria as: low environmental impact, high efficiency, high power, and high technology readiness level. I served as the lead Hydrogen Fuel Cell Researcher and originally hypothesized that PEM fuel cells would be the most viable solution. Results of the analysis led to PEM fuel cells and Li-ion batteries being top contenders, and the team developed a hybrid solution incorporating both of these technologies in a technical and strategic solution. The resulting solution design from this project has the potential to be modified and implemented in various industries and reduce overall anthropogenic emissions from industrial processes.

Date Created
2021-05
Agent

Adsorptive CO2 Capture from Ambient Air by Zeolite

148012-Thumbnail Image.png
Description

Carbon capture has been a highly sought-after technology for decades because of its<br/>capabilities to restore atmospheric damage done by greenhouse gasses. Thanks to evolving<br/>separation techniques, carbon capture is becoming more efficient with every new discovery in<br/>the field. Currently the biggest

Carbon capture has been a highly sought-after technology for decades because of its<br/>capabilities to restore atmospheric damage done by greenhouse gasses. Thanks to evolving<br/>separation techniques, carbon capture is becoming more efficient with every new discovery in<br/>the field. Currently the biggest problems that carbon capture are facing is the cost of<br/>manufacturing material to aid the process and obtaining ideal conditions for removal of carbon<br/>from air and devising solutions for removal of CO2 in ambient and flue gas conditions.<br/>This Honors Thesis is a continuation of Dr. Shuguang Deng and Dr. Mai Xu’s research<br/>initiative to manufacture and test various zeolitic CO2 removal efficiencies. The goals of this<br/>Honors Thesis are to investigate the adsorption/desorption kinetics and isothermal equilibrium<br/>CO2 capacity of a NaX nanozeolite under ambient air conditions.<br/>What was determined from the following testing was that the zeolite of interest had a<br/>higher adsorption capacity of CO2 at lower temperatures, had a maximum equilibrium quantity<br/>adsorbed of 0.203 mmol/g for CO2 and 0.367 mmol/g of N2, had a maximum breakthrough CO2<br/>capacity of 0.101 mmol of CO2 per gram of zeolite at dry conditions and 298.15K and this<br/>linearly decreased to 0.040 mmol/g at 25% relative humidity.

Date Created
2021-05
Agent

An Analysis of the Diversity of Chinese Languages in the Phoenix Metropolitan Area

148048-Thumbnail Image.png
Description

This project analyzes the diversity of the various Chinese languages present in the Phoenix metropolitan area. The diversity and presence of these languages can be used to make inferences about different aspects of the Chinese American community in the Phoenix

This project analyzes the diversity of the various Chinese languages present in the Phoenix metropolitan area. The diversity and presence of these languages can be used to make inferences about different aspects of the Chinese American community in the Phoenix area, and therefore the dialects and compared to other aspects of the Chinese American immigration experience, such as where immigrants are from, what areas of Phoenix they reside, and the Chinese language skills of both the participants and their children. The data is then presented with historical context of the Phoenix Chinese community as well as a brief discussion on the current Chinese community in Phoenix as well as the acculturation of Chinese American children.

Date Created
2021-05
Agent

Aeropak: Endurance, Elevated.

Description

Human beings have long sought to conquer the unconquerable and to push the boundaries of human endurance. There are few such endeavors more challenging than venturing into the coldest and harshest environments on the planet. The challenges these adventurers face

Human beings have long sought to conquer the unconquerable and to push the boundaries of human endurance. There are few such endeavors more challenging than venturing into the coldest and harshest environments on the planet. The challenges these adventurers face are nearly countless, but one that is often underestimated is the massive risk of dehydration in high mountains and the lack of sufficient technology to meet this important need. Astronauts and mountaineers of NASA's Johnson Space Center have created a technology that solves this problem: a freeze-resistant hydration system that helps stop water from freezing at sub-zero temperatures by using cutting-edge technology and materials science to insulate and heat enough water to prevent dehydration over the course of the day, so that adventurers no longer need to worry about their equipment stopping them. This patented technology is the basis of the founding of Aeropak, an advanced outdoor hydration brand developed by three ASU students (Kendall Robinson, Derek Stein, and Thomas Goers) in collaboration with W.P. Carey’s Founder’s Lab. The primary goal was to develop traction among winter sport enthusiasts to create a robust customer base and evaluate the potential for partnership with hydration solution companies as well as direct sales through online and brick-and-mortar retail avenues. To this end, the Aeropak team performed market research to determine the usefulness and need for the product through a survey sent out to a number of outdoor sporting clubs on Arizona State University’s campus. After determining an interest in a potential product, the team developed a marketing strategy and business model which was executed through Instagram as well as a standalone website, with the goal of garnering interest and traction for a future product. Future goals of the project will be to bring a product to market and expand Aeropak’s reach into a variety of winter sport subcommunities, as well as evaluate the potential for further expansion into large-scale retailers and collaboration with established companies.

Date Created
2021-05
Agent

Arsenic Sorption by Iron Impregnated Biochar

148174-Thumbnail Image.png
Description

Much of Nepal lacks access to clean drinking water, and many water sources are contaminated with arsenic at concentrations above both World Health Organization and local Nepalese guidelines. While many water treatment technologies exist, it is necessary to identify those

Much of Nepal lacks access to clean drinking water, and many water sources are contaminated with arsenic at concentrations above both World Health Organization and local Nepalese guidelines. While many water treatment technologies exist, it is necessary to identify those that are easily implementable in developing areas. One simple treatment that has gained popularity is biochar—a porous, carbon-based substance produced through pyrolysis of biomass in an oxygen-free environment. Arizona State University’s Engineering Projects in Community Service (EPICS) has partnered with communities in Nepal in an attempt to increase biochar production in the area, as it has several valuable applications including water treatment. Biochar’s arsenic adsorption capability will be investigated in this project with the goal of using the biochar that Nepalese communities produce to remove water contaminants. It has been found in scientific literature that biochar is effective in removing heavy metal contaminants from water with the addition of iron through surface activation. Thus, the specific goal of this research was to compare the arsenic adsorption disparity between raw biochar and iron-impregnated biochar. It was hypothesized that after numerous bed volumes pass through a water treatment column, iron from the source water will accumulate on the surface of raw biochar, mimicking the intentionally iron-impregnated biochar and further increasing contaminant uptake. It is thus an additional goal of this project to compare biochar loaded with iron through an iron-spiked water column and biochar impregnated with iron through surface oxidation. For this investigation, the biochar was crushed and sieved to a size between 90 and 100 micrometers. Two samples were prepared: raw biochar and oxidized biochar. The oxidized biochar was impregnated with iron through surface oxidation with potassium permanganate and iron loading. Then, X-ray fluorescence was used to compare the composition of the oxidized biochar with its raw counterpart, indicating approximately 0.5% iron in the raw and 1% iron in the oxidized biochar. The biochar samples were then added to batches of arsenic-spiked water at iron to arsenic concentration ratios of 20 mg/L:1 mg/L and 50 mg/L:1 mg/L to determine adsorption efficiency. Inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated an 86% removal of arsenic using a 50:1 ratio of iron to arsenic (1.25 g biochar required in 40 mL solution), and 75% removal with a 20:1 ratio (0.5 g biochar required in 40 mL solution). Additional samples were then inserted into a column process apparatus for further adsorption analysis. Again, ICP-MS analysis was performed and the results showed that while both raw and treated biochars were capable of adsorbing arsenic, they were exhausted after less than 70 bed volumes (234 mL), with raw biochar lasting 60 bed volumes (201 mL) and oxidized about 70 bed volumes (234 mL). Further research should be conducted to investigate more affordable and less laboratory-intensive processes to prepare biochar for water treatment.

Date Created
2021-05
Agent

Studies of Engineered and Native Cyanobacterial Strains for Increased Growth Rate

148246-Thumbnail Image.png
Description

The production of sustainable biochemicals has been a major topic of discussion in recent years. Using microbial cells for their production through genetic engineering has been a major topic of research. Cyanobacteria have been considered as a viable candidate for

The production of sustainable biochemicals has been a major topic of discussion in recent years. Using microbial cells for their production through genetic engineering has been a major topic of research. Cyanobacteria have been considered as a viable candidate for such production. However, the slow growth rate of the cells presents a challenge for the possibility of scaling for use in industrial settings. This project focuses on two different solutions for this problem. The first is using four different engineered strains of Synechocystis sp. PCC 6803 that overexpress the proteins in the b6f complex to improve photosynthetic efficiency. It was found that the strains PetB and PetD showed an increase in growth rate compared to wild type cells. This was especially true under mixotrophic conditions and with a light intensity of 100 µmol photons*m-2s-1 for 3 days. The second solution is by using a newly discovered marine strain of cyanobacteria, Synechococcus sp. PCC 11901, which has a higher reported growth rate. Higher growth rates were achieved for this strain when it was grown mixotrophically with glycerol, and when grown in bubble cultures with aeration.

Date Created
2021-05
Agent

An Analysis of Museums Using the Contextual Model of Learning to Aid in the Development of STEAMtank at ASU

Description

Researchers John H. Falk and Lynn D. Dierking developed what they call the Contextual Model of Learning in their 2012 publication, The Museum Experience Revisited. This model emphasizes the significance of the visitor experience in the museum industry and is

Researchers John H. Falk and Lynn D. Dierking developed what they call the Contextual Model of Learning in their 2012 publication, The Museum Experience Revisited. This model emphasizes the significance of the visitor experience in the museum industry and is defined as three interconnected contexts that constitute a museum visitor’s experience. These contexts are the personal context, the sociocultural context, and the physical context. Falk and Dierking argue that all three contexts must be properly acknowledged by the museum for a positive visitor experience. They also provide readers with several recommendations on effective design strategies that fit within the principles of the Contextual Model of Learning. In this analysis, these principles are related directly to museums today. The Field Museum in Chicago and The Children’s Museum of Phoenix are noted for having exceptional websites. The Royal Ontario Museum and the Asian Art Museum are mentioned for having engaging marketing strategies. The Black Country Living Museum in the United Kingdom and the Museum of Modern Art in New York are recognized for innovative social media use. The USS Midway Museum in San Diego and the Musical Instrument Museum in Phoenix are acknowledged for their excellent designs, media usage in exhibits, and accessibility options. The British Museum in London is mentioned for its virtual experiences and gift shop. The Metropolitan Museum of Art is also mentioned for its gift shop. The Arizona Science Center and the Children’s Museum of Indianapolis are commended for their programs. Finally, a brief discussion is done on STEAMtank, a museum experience in development at Arizona State University, and how the principles within the Contextual Model of Learning are being integrated in similar fashion to the other museums discussed.

Date Created
2021-05
Agent

Analyzing the Effects of Conduction, Convection, and Radiation in a Rotary Drum

148451-Thumbnail Image.png
Description

Rotary drums are tools used extensively in various prominent industries for their utility in heating and transporting particulate products. These processes are often inefficient and studies on heat transfer in rotary drums will reduce energy consumption as operating parameters are

Rotary drums are tools used extensively in various prominent industries for their utility in heating and transporting particulate products. These processes are often inefficient and studies on heat transfer in rotary drums will reduce energy consumption as operating parameters are optimized. Research on this subject has been ongoing at ASU; however, the design of the rotary drum used in these studies is restrictive and experiments using radiation heat transfer have not been possible.<br/><br/>This study focuses on recounting the steps taken to upgrade the rotary drum setup and detailing the recommended procedure for experimental tests using radiant heat transfer upon completed construction of the new setup. To develop an improved rotary drum setup, flaws in the original design were analyzed and resolved. This process resulted in a redesigned drum heating system, an altered thinner drum, and a larger drum box. The recommended procedure for radiant heat transfer tests is focused on determining how particle size, drum fill level, and drum rotation rate impact the radiant heat transfer rate.

Date Created
2021-05
Agent