Underutilized Spaces and Marginal Lands for Sustainable Land Use: A Multi-Scale Analysis

158025-Thumbnail Image.png
Description
Drawn from a trio of manuscripts, this dissertation evaluates the sustainability contributions and implications of deploying underutilized spaces for alternative uses at multiple scales: urban, regional and continental. The first paper considers the use of underutilized spaces at the urban

Drawn from a trio of manuscripts, this dissertation evaluates the sustainability contributions and implications of deploying underutilized spaces for alternative uses at multiple scales: urban, regional and continental. The first paper considers the use of underutilized spaces at the urban scale for urban agriculture (UA) to meet local sustainability goals in Phoenix, Arizona. Through a data-driven analysis, it demonstrates UA can meet 90% of annual demand for fresh produce, supply local produce in all food deserts, reduce areas underserved by public parks by 60%, and displace >50,000 tons of carbon-dioxide emissions from buildings.

The second paper considers marginal agricultural land use for bioenergy crop cultivation to meet future liquid fuels demand from cellulosic biofuels sustainably and profitably. At a wholesale fuel price of $4 gallons-of-gasoline-equivalent, 30 to 90.7 billion gallons of cellulosic biofuels can be supplied by converting 22 to 79.3 million hectares of marginal lands in the Eastern United States (U.S.). Displacing marginal croplands (9.4-13.7 million hectares) reduces stress on water resources by preserving soil moisture. This displacement is comparable to existing land use for first-generation biofuels, limiting food supply impacts. Coupled modeling reveals positive hydroclimate feedback on bioenergy crop yields that moderates the land footprint.

The third paper examines the sustainability implications of expanding use of marginal lands for corn cultivation in the Western Corn Belt, a commercially important and environmentally sensitive U.S. region. Corn cultivation on lower quality lands, which tend to overlap with marginal agricultural lands, is shown to be nearly three times more sensitive to changes in crop prices. Therefore, corn cultivation disproportionately expanded into these lands following price spikes.

Underutilized spaces can contribute towards sustainability at small and large scales in a complementary fashion. While supplying fresh produce locally and delivering other benefits in terms of energy use and public health, UA can also reduce pressures on croplands and complement non-urban food production. This complementarity can help diversify agricultural land use for meeting other goals, like supplying biofuels. However, understanding the role of market forces and economic linkages is critical to anticipate any unintended consequences due to such re-organization of land use.
Date Created
2020
Agent

A Data-driven, High-performance and Intelligent CyberInfrastructure to Advance Spatial Sciences

157004-Thumbnail Image.png
Description
In the field of Geographic Information Science (GIScience), we have witnessed the unprecedented data deluge brought about by the rapid advancement of high-resolution data observing technologies. For example, with the advancement of Earth Observation (EO) technologies, a massive amount of

In the field of Geographic Information Science (GIScience), we have witnessed the unprecedented data deluge brought about by the rapid advancement of high-resolution data observing technologies. For example, with the advancement of Earth Observation (EO) technologies, a massive amount of EO data including remote sensing data and other sensor observation data about earthquake, climate, ocean, hydrology, volcano, glacier, etc., are being collected on a daily basis by a wide range of organizations. In addition to the observation data, human-generated data including microblogs, photos, consumption records, evaluations, unstructured webpages and other Volunteered Geographical Information (VGI) are incessantly generated and shared on the Internet.

Meanwhile, the emerging cyberinfrastructure rapidly increases our capacity for handling such massive data with regard to data collection and management, data integration and interoperability, data transmission and visualization, high-performance computing, etc. Cyberinfrastructure (CI) consists of computing systems, data storage systems, advanced instruments and data repositories, visualization environments, and people, all linked together by software and high-performance networks to improve research productivity and enable breakthroughs that are not otherwise possible.

The Geospatial CI (GCI, or CyberGIS), as the synthesis of CI and GIScience has inherent advantages in enabling computationally intensive spatial analysis and modeling (SAM) and collaborative geospatial problem solving and decision making.

This dissertation is dedicated to addressing several critical issues and improving the performance of existing methodologies and systems in the field of CyberGIS. My dissertation will include three parts: The first part is focused on developing methodologies to help public researchers find appropriate open geo-spatial datasets from millions of records provided by thousands of organizations scattered around the world efficiently and effectively. Machine learning and semantic search methods will be utilized in this research. The second part develops an interoperable and replicable geoprocessing service by synthesizing the high-performance computing (HPC) environment, the core spatial statistic/analysis algorithms from the widely adopted open source python package – Python Spatial Analysis Library (PySAL), and rich datasets acquired from the first research. The third part is dedicated to studying optimization strategies for feature data transmission and visualization. This study is intended for solving the performance issue in large feature data transmission through the Internet and visualization on the client (browser) side.

Taken together, the three parts constitute an endeavor towards the methodological improvement and implementation practice of the data-driven, high-performance and intelligent CI to advance spatial sciences.
Date Created
2018
Agent

Issues in the Distribution Dynamics Approach to the Analysis of Regional Economic Growth and Convergence: Spatial Effects and Small Samples

156693-Thumbnail Image.png
Description
In the study of regional economic growth and convergence, the distribution dynamics approach which interrogates the evolution of the cross-sectional distribution as a whole and is concerned with both the external and internal dynamics of the distribution has received wide

In the study of regional economic growth and convergence, the distribution dynamics approach which interrogates the evolution of the cross-sectional distribution as a whole and is concerned with both the external and internal dynamics of the distribution has received wide usage. However, many methodological issues remain to be resolved before valid inferences and conclusions can be drawn from empirical research. Among them, spatial effects including spatial heterogeneity and spatial dependence invalidate the assumption of independent and identical distributions underlying the conventional maximum likelihood techniques while the availability of small samples in regional settings questions the usage of the asymptotic properties. This dissertation is comprised of three papers targeted at addressing these two issues. The first paper investigates whether the conventional regional income mobility estimators are still suitable in the presence of spatial dependence and/or a small sample. It is approached through a series of Monte Carlo experiments which require the proposal of a novel data generating process (DGP) capable of generating spatially dependent time series. The second paper moves to the statistical tests for detecting specific forms of spatial (spatiotemporal) effects in the discrete Markov chain model, investigating their robustness to the alternative spatial effect, sensitivity to discretization granularity, and properties in small sample settings. The third paper proposes discrete kernel estimators with cross-validated bandwidths as an alternative to maximum likelihood estimators in small sample settings. It is demonstrated that the performance of discrete kernel estimators offers improvement when the sample size is small. Taken together, the three papers constitute an endeavor to relax the restrictive assumptions of spatial independence and spatial homogeneity, as well as demonstrating the difference between the small sample and asymptotic properties for conventionally adopted maximum likelihood estimators towards a more valid inferential framework for the distribution dynamics approach to the study of regional economic growth and convergence.
Date Created
2018
Agent

Spatial-Temporal Analysis of Barrett Freshmen 2007-2012: Source Area Analysis and Poisson Regression

137740-Thumbnail Image.png
Description
In order to help enhance admissions and recruiting efforts, this longitudinal study analyzed the geographic distribution of matriculated Barrett freshmen from 2007-2012 and sought to explore hot and cold spot locations of Barrett enrollment numbers using geographic information science (GIS)

In order to help enhance admissions and recruiting efforts, this longitudinal study analyzed the geographic distribution of matriculated Barrett freshmen from 2007-2012 and sought to explore hot and cold spot locations of Barrett enrollment numbers using geographic information science (GIS) methods. One strategy involved   weighted mean center and standard distance analyses for each year of data for non-resident (out-of-state) freshmen home zip codes. Another strategy, a Poisson regression model, revealed recruitment "hot and cold spots" across the U.S. to project the expected counts of Barrett freshmen by zip code. This projected count served as a comparison for the actual admissions data, where zip codes with over and under predictions represented cold and hot spots, respectively. The mean center analysis revealed a westward shift from 2007 to 2012 with similar distance dispersions. The Poisson model projected zero-student zip codes with 99.2% accuracy and non-zero zip codes with 73.8% accuracy. Norwalk, CA (90650) and New York, NY (10021) represented the top out-of-state cold spot zip codes, while the model indicated that Chandler, AZ (85249) and Queen Creek, AZ (85242) had the most in-state potential for recruitment. The model indicated that more students have come from Albuquerque, NM (87122) and Aurora, CO (80015) than anticipated, while Phoenix, AZ (85048) and Tempe, AZ (85284) represent in-state locations with higher correlations between the variables included, especially regarding distance decay, and the than expected numbers of freshmen. The regression also indicated the existence of strong likelihood of attracting Barrett students.
Date Created
2013-05
Agent

A "Massive Fact" of American Politics: Revisitng Regions in the Contemporary House of Representatives

137472-Thumbnail Image.png
Description
All politics is local, but some locales practice politics differently than others. Unique, individual relationships between a place and the social institutions of politics modifies and mitigates assumptions of how politics works across space. This analysis takes into account cultural

All politics is local, but some locales practice politics differently than others. Unique, individual relationships between a place and the social institutions of politics modifies and mitigates assumptions of how politics works across space. This analysis takes into account cultural theory concerning political behavior of place and regions and work by political scientists analyzing the differences in political behavior and preferences and aims to test a hypothesis about spatial patterns in the defections from party line votes in the US House of Representatives.
Date Created
2013-05
Agent

Policy and Place: A Spatial Data Science Framework for Research and Decision-Making

155841-Thumbnail Image.png
Description
A major challenge in health-related policy and program evaluation research is attributing underlying causal relationships where complicated processes may exist in natural or quasi-experimental settings. Spatial interaction and heterogeneity between units at individual or group levels can violate both components

A major challenge in health-related policy and program evaluation research is attributing underlying causal relationships where complicated processes may exist in natural or quasi-experimental settings. Spatial interaction and heterogeneity between units at individual or group levels can violate both components of the Stable-Unit-Treatment-Value-Assumption (SUTVA) that are core to the counterfactual framework, making treatment effects difficult to assess. New approaches are needed in health studies to develop spatially dynamic causal modeling methods to both derive insights from data that are sensitive to spatial differences and dependencies, and also be able to rely on a more robust, dynamic technical infrastructure needed for decision-making. To address this gap with a focus on causal applications theoretically, methodologically and technologically, I (1) develop a theoretical spatial framework (within single-level panel econometric methodology) that extends existing theories and methods of causal inference, which tend to ignore spatial dynamics; (2) demonstrate how this spatial framework can be applied in empirical research; and (3) implement a new spatial infrastructure framework that integrates and manages the required data for health systems evaluation.

The new spatially explicit counterfactual framework considers how spatial effects impact treatment choice, treatment variation, and treatment effects. To illustrate this new methodological framework, I first replicate a classic quasi-experimental study that evaluates the effect of drinking age policy on mortality in the United States from 1970 to 1984, and further extend it with a spatial perspective. In another example, I evaluate food access dynamics in Chicago from 2007 to 2014 by implementing advanced spatial analytics that better account for the complex patterns of food access, and quasi-experimental research design to distill the impact of the Great Recession on the foodscape. Inference interpretation is sensitive to both research design framing and underlying processes that drive geographically distributed relationships. Finally, I advance a new Spatial Data Science Infrastructure to integrate and manage data in dynamic, open environments for public health systems research and decision- making. I demonstrate an infrastructure prototype in a final case study, developed in collaboration with health department officials and community organizations.
Date Created
2017
Agent

Developing new methods for analyzing urban energy use in buildings: historic turnover, spatial patterns, and future forecasting

154744-Thumbnail Image.png
Description
Energy use within urban building stocks is continuing to increase globally as populations expand and access to electricity improves. This projected increase in demand could require deployment of new generation capacity, but there is potential to offset some of

Energy use within urban building stocks is continuing to increase globally as populations expand and access to electricity improves. This projected increase in demand could require deployment of new generation capacity, but there is potential to offset some of this demand through modification of the buildings themselves. Building stocks are quasi-permanent infrastructures which have enduring influence on urban energy consumption, and research is needed to understand: 1) how development patterns constrain energy use decisions and 2) how cities can achieve energy and environmental goals given the constraints of the stock. This requires a thorough evaluation of both the growth of the stock and as well as the spatial distribution of use throughout the city. In this dissertation, a case study in Los Angeles County, California (LAC) is used to quantify urban growth, forecast future energy use under climate change, and to make recommendations for mitigating energy consumption increases. A reproducible methodological framework is included for application to other urban areas.

In LAC, residential electricity demand could increase as much as 55-68% between 2020 and 2060, and building technology lock-in has constricted the options for mitigating energy demand, as major changes to the building stock itself are not possible, as only a small portion of the stock is turned over every year. Aggressive and timely efficiency upgrades to residential appliances and building thermal shells can significantly offset the projected increases, potentially avoiding installation of new generation capacity, but regulations on new construction will likely be ineffectual due to the long residence time of the stock (60+ years and increasing). These findings can be extrapolated to other U.S. cities where the majority of urban expansion has already occurred, such as the older cities on the eastern coast. U.S. population is projected to increase 40% by 2060, with growth occurring in the warmer southern and western regions. In these growing cities, improving new construction buildings can help offset electricity demand increases before the city reaches the lock-in phase.
Date Created
2016
Agent

Open Geospatial Analytics with PySAL

130375-Thumbnail Image.png
Description
This article reviews the range of delivery platforms that have been developed for the PySAL open source Python library for spatial analysis. This includes traditional desktop software (with a graphical user interface, command line or embedded in a computational notebook),

This article reviews the range of delivery platforms that have been developed for the PySAL open source Python library for spatial analysis. This includes traditional desktop software (with a graphical user interface, command line or embedded in a computational notebook), open spatial analytics middleware, and web, cloud and distributed open geospatial analytics for decision support. A common thread throughout the discussion is the emphasis on openness, interoperability, and provenance management in a scientific workflow. The code base of the PySAL library provides the common computing framework underlying all delivery mechanisms.
Date Created
2015-06-01
Agent

Deriving an obstacle-avoiding shortest path in continuous space: a spatial approach

153527-Thumbnail Image.png
Description
The shortest path between two locations is important for spatial analysis, location modeling, and wayfinding tasks. Depending on permissible movement and availability of data, the shortest path is either derived from a pre-defined transportation network or constructed in continuous space.

The shortest path between two locations is important for spatial analysis, location modeling, and wayfinding tasks. Depending on permissible movement and availability of data, the shortest path is either derived from a pre-defined transportation network or constructed in continuous space. However, continuous space movement adds substantial complexity to identifying the shortest path as the influence of obstacles has to be considered to avoid errors and biases in a derived path. This obstacle-avoiding shortest path in continuous space has been referred to as Euclidean shortest path (ESP), and attracted the attention of many researchers. It has been proven that constructing a graph is an effective approach to limit infinite search options associated with continuous space, reducing the problem to a finite set of potential paths. To date, various methods have been developed for ESP derivation. However, their computational efficiency is limited due to fundamental limitations in graph construction. In this research, a novel algorithm is developed for efficient identification of a graph guaranteed to contain the ESP. This new approach is referred to as the convexpath algorithm, and exploits spatial knowledge and GIS functionality to efficiently construct a graph. The convexpath algorithm utilizes the notion of a convex hull to simultaneously identify relevant obstacles and construct the graph. Additionally, a spatial filtering technique based on intermediate shortest path is enhances intelligent identification of relevant obstacles. Empirical applications show that the convexpath algorithm is able to construct a graph and derive the ESP with significantly improved efficiency compared to visibility and local visibility graph approaches. Furthermore, to boost the performance of convexpath in big data environments, a parallelization approach is proposed and applied to exploit computationally intensive spatial operations of convexpath. Multicore CPU parallelization demonstrates noticeable efficiency gain over the sequential convexpath. Finally, spatial representation and approximation issues associated with raster-based approximation of the ESP are assessed. This dissertation provides a comprehensive treatment of the ESP, and details an important approach for deriving an optimal ESP in real time.
Date Created
2015
Agent

How does built environment affect cycling?: evidence from the whole California 2010-2012

153442-Thumbnail Image.png
Description
It has been identified in the literature that there exists a link between the built environment and non-motorized transport. This study aims to contribute to existing literature on the effects of the built environment on cycling, examining the case of

It has been identified in the literature that there exists a link between the built environment and non-motorized transport. This study aims to contribute to existing literature on the effects of the built environment on cycling, examining the case of the whole State of California. Physical built environment features are classified into six groups as: 1) local density, 2) diversity of land use, 3) road connectivity, 4) bike route length, 5) green space, 6) job accessibility. Cycling trips in one week for all children, school children, adults and employed-adults are investigated separately. The regression analysis shows that cycling trips is significantly associated with some features of built environment when many socio-demographic factors are taken into account. Street intersections, bike route length tend to increase the use of bicycle. These effects are well-aligned with literature. Moreover, both local and regional job accessibility variables are statistically significant in two adults' models. However, residential density always has a significant negatively effect on cycling trips, which is still need further research to confirm. Also, there is a gap in literature on how green space affects cycling, but the results of this study is still too unclear to make it up. By elasticity analysis, this study concludes that street intersections is the most powerful predictor on cycling trips. From another perspective, the effects of built environment on cycling at workplace (or school) are distinguished from at home. This study implies that a wide range of measures are available for planners to control vehicle travel by improving cycling-level in California.
Date Created
2015
Agent