Metal oxide nanoparticles in electrospun polymers and their fate in aqueous waste streams

153798-Thumbnail Image.png
Description
Nanotechnology is becoming increasingly present in our environment. Engineered nanoparticles (ENPs), defined as objects that measure less than 100 nanometers in at least one dimension, are being integrated into commercial products because of their small size, increased surface area, and

Nanotechnology is becoming increasingly present in our environment. Engineered nanoparticles (ENPs), defined as objects that measure less than 100 nanometers in at least one dimension, are being integrated into commercial products because of their small size, increased surface area, and quantum effects. These special properties have made ENPs antimicrobial agents in clothing and plastics, among other applications in industries such as pharmaceuticals, renewable energy, and prosthetics. This thesis incorporates investigations into both application of nanoparticles into polymers as well as implications of nanoparticle release into the environment. First, the integration of ENPs into polymer fibers via electrospinning was explored. Electrospinning uses an external electric field applied to a polymer solution to produce continuous fibers with large surface area and small volume, a quality which makes the fibers ideal for water and air purification purposes. Indium oxide and titanium dioxide nanoparticles were embedded in polyvinylpyrrolidone and polystyrene. Viscosity, critical voltage, and diameter of electrospun fibers were analyzed in order to determine the effects of nanoparticle integration into the polymers. Critical voltage and viscosity of solution increased at 5 wt% ENP concentration. Fiber morphology was not found to change significantly as a direct effect of ENP addition, but as an effect of increased viscosity and surface tension. These results indicate the possibility for seamless integration of ENPs into electrospun polymers. Implications of ENP release were investigated using phase distribution functional assays of nanoscale silver and silver sulfide, as well as photolysis experiments of nanoscale titanium dioxide to quantify hydroxyl radical production. Functional assays are a means of screening the relevant importance of multiple processes in the environmental fate and transport of ENPs. Four functional assays – water-soil, water-octanol, water-wastewater sludge and water-surfactant – were used to compare concentrations of silver sulfide ENPs (Ag2S-NP) and silver ENPs (AgNP) capped by four different coatings. The functional assays resulted in reproducible experiments which clearly showed variations between nanoparticle phase distributions; the findings may be a product of the effects of the different coatings of the ENPs used. In addition to phase distribution experiments, the production of hydroxyl radical (HO•) by nanoscale titanium dioxide (TiO2) under simulated solar irradiation was investigated. Hydroxyl radical are a short-lived, highly reactive species produced by solar radiation in aquatic environments that affect ecosystem function and degrades pollutants. HO• is produced by photolysis of TiO2 and nitrate (NO3-); these two species were used in photolysis experiments to compare the relative loads of hydroxyl radical which nanoscale TiO2 may add upon release to natural waters. Para-chlorobenzoic acid (pCBA) was used as a probe. Measured rates of pCBA oxidation in the presence of various concentrations of TiO2 nanoparticles and NO3- were utilized to calculate pseudo first order rate constants. Results indicate that, on a mass concentration basis in water, TiO2 produces hydroxyl radical steady state concentrations at 1.3 times more than the equivalent amount of NO3-; however, TiO2 concentrations are generally less than one order of magnitude lower than concentrations of NO3-. This has implications for natural waterways as the amount of nanoscale TiO2 released from consumer products into natural waterways increases in proportion to its use.
Date Created
2015
Agent

Modeling engineered nanoparticles removal by conventional activated sludge treatment process in wastewater treatment plant

153784-Thumbnail Image.png
Description
The production and applications of engineered nanomaterials (ENM) has increased rapidly in the last decade, with release of ENM to the environment through the sewer system and municipal wastewater treatment plants (WWTPs) being of concern. Currently, the literature on ENM

The production and applications of engineered nanomaterials (ENM) has increased rapidly in the last decade, with release of ENM to the environment through the sewer system and municipal wastewater treatment plants (WWTPs) being of concern. Currently, the literature on ENM release from WWTPs and removal of ENM by WWTPs is insufficient and disorganized. There is little quantitative data on the removal of multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), or few-layer graphene (FLG), from wastewater onto biomass. The removal of pristine and oxidized MWCNTs (O-MWCNTs), graphene oxide (GO), few-layer graphene (FLG) and Tween™ 20-coated Ag ENM by the interaction with biomass were determined by programmable thermal analysis (PTA) and UV-Vis spectrophotometry. The removal of pristine and O-MWCNTs was 96% from the water phase via aggregation and 30-min settling in presence or absence of biomass with an initial MWCNT concentration of 25 mg/L. The removal of 25 mg/L GO was 65% with biomass concentration at or above 1,000 mg TSS/L. The removal of 1 mg/L FLG was 16% with 50 mg TSS/L. The removal of Tween™ 20 Ag ENM with concentration from 0.97 mg/L to 2.6 mg/L was from 11% to 92% with biomass concentration of 500 mg TSS/L to 3,000 mg TSS/L, respectively.

A database of ENM removal by biomass was established by analyzing data from published papers, and non-linear solid-liquid distribution functions were built into the database. A conventional activated sludge (CAS) model was built based on a membrane bioreactor (MBR) model from a previous paper. An iterative numeric approach was adapted to the CAS model to calculate the result of non-linear adsorption of ENM by biomass in the CAS process. Kinetic studies of the CAS model showed the model performance changed mostly in the first 10 days after changing influent chemical oxygen demand (COD) concentration, and reached a steady state after 11 days. Over 60% of ENMs which have distribution coefficients in the database reached higher than 50% removal by the CAS model under general operational conditions. This result suggests that traditional WWTP which include the CAS process can remove many known types of ENMs in certain degree.
Date Created
2015
Agent

Phosphorus recovery from microbial biofuel residual using microwave peroxide digestion and anion exchange

130399-Thumbnail Image.png
Description
Sustainable production of microalgae for biofuel requires efficient phosphorus (P) utilization, which is a limited resource and vital for global food security. This research tracks the fate of P through biofuel production and investigates P recovery from the biomass using

Sustainable production of microalgae for biofuel requires efficient phosphorus (P) utilization, which is a limited resource and vital for global food security. This research tracks the fate of P through biofuel production and investigates P recovery from the biomass using the cyanobacterium Synechocystis sp. PCC 6803. Our results show that Synechocystis contained 1.4% P dry weight. After crude lipids were extracted (e.g., for biofuel processing), 92% of the intracellular P remained in the residual biomass, indicating phospholipids comprised only a small percentage of cellular P. We estimate a majority of the P is primarily associated with nucleic acids. Advanced oxidation using hydrogen peroxide and microwave heating released 92% of the cellular P into orthophosphate. We then recovered the orthophosphate from the digestion matrix using two different types of anion exchange resins. One resin impregnated with iron nanoparticles adsorbed 98% of the influent P through 20 bed volumes, but only released 23% during regeneration. A strong-base anion exchange resin adsorbed 87% of the influent P through 20 bed volumes and released 50% of it upon regeneration. This recovered P subsequently supported growth of Synechocystis. This proof-of-concept recovery process reduced P demand of biofuel microalgae by 54%.
Date Created
2015-03-01
Agent

Chloroform formation from swimming pool disinfection: a significant source of atmospheric chloroform in Phoenix?

153253-Thumbnail Image.png
Description
Chloroform (CHCl3) is an important atmospheric pollutant by its direct health effects as well as by its contribution to photochemical smog formation. Chloroform outgassing from swimming pools is not typically considered a source of atmospheric CHCl3 because swimming pools are

Chloroform (CHCl3) is an important atmospheric pollutant by its direct health effects as well as by its contribution to photochemical smog formation. Chloroform outgassing from swimming pools is not typically considered a source of atmospheric CHCl3 because swimming pools are scarce compared to other sources. However, large urban areas in hot climates such as Phoenix, AZ contain a substantial amount of swimming pools, potentially resulting in significant atmospheric fluxes. In this study, CHCl3 formation potential (FP) from disinfection of swimming pools in Phoenix was investigated through laboratory experiments and annual CHCl3 emission fluxes from swimming pools were estimated based on the experimental data.

Swimming pool water (collected in June 2014 in Phoenix) and model contaminants (Pharmaceuticals and Personal Care Products (PPCPs), Endocrine Disrupting Compounds (EDCs), artificial sweeteners, and artificial human waste products) were chlorinated in controlled laboratory experiments. The CHCl3 production during chlorination was determined using Gas Chromatography-Mass Spectrometry (GC-MS) following solid-phase microextraction (SPME). Upon chlorination, all swimming pool water samples and contaminants produced measureable amounts of chloroform. Chlorination of swimming pool water produced 0.005-0.134 mol CHCl3/mol C and 0.004-0.062 mol CHCl3/mol Cl2 consumed. Chlorination of model contaminants produced 0.004-0.323 mol CHCl3/mol C and 0.001-0.247 mol CHCl3/mol Cl2 consumed. These numbers are comparable and indicate that the model contaminants react similarly to swimming pool water during chlorination. The CHCl3 flux from swimming pools in Phoenix was estimated at approximately 3.9-4.3 Gg/yr and was found to be largely dependent on water temperature and wind speed while air temperature had little effect. This preliminary estimate is orders of magnitude larger than previous estimates of anthropogenic emissions in Phoenix suggesting that swimming pools might be a significant source of atmospheric CHCl3 locally.
Date Created
2014
Agent

Modeling occurrence and assessing public perceptions of de facto wastewater reuse across the USA

152702-Thumbnail Image.png
Description
The National Research Council 2011 report lists quantifying the extent of de facto (or unplanned) potable reuse in the U.S. as the top research need associated with assessing the potential for expanding the nations water supply through reuse of municipal

The National Research Council 2011 report lists quantifying the extent of de facto (or unplanned) potable reuse in the U.S. as the top research need associated with assessing the potential for expanding the nations water supply through reuse of municipal wastewater. Efforts to identify the significance and potential health impacts of de facto water reuse are impeded by out dated information regarding the contribution of municipal wastewater effluent to potable water supplies. This project aims to answer this research need. The overall goal of the this project is to quantify the extent of de facto reuse by developing a model that estimates the amount of wastewater effluent that is present within drinking water treatment plants; and to use the model in conjunction with a survey to help assess public perceptions. The four-step approach to accomplish this goal includes: (1) creating a GIS-based model coupled with Python programming; (2) validating the model with field studies by analyzing sucralose as a wastewater tracer; (3) estimating the percentage of wastewater in raw drinking water sources under varying streamflow conditions; (4) and assessing through a social survey the perceptions of the general public relating to acceptance and occurrence of de facto reuse. The resulting De Facto Reuse in our Nations Consumable Supply (DRINCS) Model, estimates that treated municipal wastewater is present at nearly 50% of drinking water treatment plant intake sites serving greater than 10,000 people (N=2,056). Contrary to the high frequency of occurrence, the magnitude of occurrence is relatively low with 50% of impacted intakes yielding less than 1% de facto reuse under average streamflow conditions. Model estimates increase under low flow conditions (modeled by Q95), in several cases treated wastewater makes up 100% of the water supply. De facto reuse occurs at levels that surpass what is publically perceived in the three cities of Atlanta, GA, Philadelphia, PA, and Phoenix, AZ. Respondents with knowledge of de facto reuse occurrence are 10 times more likely to have a high acceptance (greater than 75%) of treated wastewater at their home tap.
Date Created
2014
Agent

Use of interface treatment to reduce emissions from residuals in lower permeability zones to groundwater flowing through more permeable zones

152650-Thumbnail Image.png
Description
Hydrocarbon spill site cleanup is challenging when contaminants are present in lower permeability layers. These are difficult to remediate and may result in long-term groundwater impacts. The research goal is to investigate strategies for long-term reduction of contaminant emissions from

Hydrocarbon spill site cleanup is challenging when contaminants are present in lower permeability layers. These are difficult to remediate and may result in long-term groundwater impacts. The research goal is to investigate strategies for long-term reduction of contaminant emissions from sources in low permeability layers through partial source treatment at higher/lower permeability interfaces. Conceptually, this provides a clean/reduced concentration zone near the interface, and consequently a reduced concentration gradient and flux from the lower permeability layer. Treatment by in-situ chemical oxidation (ISCO) was evaluated using hydrogen peroxide (H2O2) and sodium persulfate (Na2S2O8). H2O2 studies included lab and field-scale distribution studies and lab emission reduction experiments. The reaction rate of H2O2 in soils was so fast it did not travel far (<1 m) from delivery points under typical flow conditions. Oxygen gas generated and partially trapped in soil pores served as a dissolved oxygen (DO) source for >60 days in field and lab studies. During that period, the laboratory studies had reduced hydrocarbon impacts, presumably from aerobic biodegradation, which rebounded once the O2 source depleted. Therefore field monitoring should extend beyond the post-treatment elevated DO. Na2S2O8 use was studied in two-dimensional tanks (122-cm tall, 122-cm wide, and 5-cm thick) containing two contrasting permeability layers (three orders of magnitude difference). The lower permeability layer initially contained a dissolved-sorbed contaminant source throughout this layer, or a 10-cm thick non-aqueous phase liquid (NAPL)-impacted zone below the higher/lower permeability interface. The dissolved-sorbed source tank was actively treated for 14 d. Two hundred days after treatment, the emission reduction of benzene, toluene, ethylbenzene, and p-xylene (BTEX) were 95-99% and methyl tert-butyl ether (MTBE) was 63%. The LNAPL-source tank had three Na2S2O8 and two sodium hydroxide (NaOH) applications for S2O82- base activation. The resulting emission reductions for BTEX, n-propylbenzene, and 1,3,5 trymethylbenzene were 55-73%. While less effective at reducing emissions from LNAPL sources, the 14-d treatment delivered sufficient S2O82- though diffusion to remediate BTEX from the 60 cm dissolved-sorbed source. The overall S2O82- utilization in the dissolved source experiment was calculated by mass balance to be 108-125 g S2O82-/g hydrocarbon treated.
Date Created
2014
Agent

Overcoming the impacts of extreme weather and dissolved organic matter on the treatability of water using ozone

152626-Thumbnail Image.png
Description
The influence of climate variability and reclaimed wastewater on the water supply necessitates improved understanding of the treatability of trace and bulk organic matter. Dissolved organic matter (DOM) mobilized during extreme weather events and in treated wastewater includes natural organic

The influence of climate variability and reclaimed wastewater on the water supply necessitates improved understanding of the treatability of trace and bulk organic matter. Dissolved organic matter (DOM) mobilized during extreme weather events and in treated wastewater includes natural organic matter (NOM), contaminants of emerging concern (CECs), and microbial extracellular polymeric substances (EPS). The goal of my dissertation was to quantify the impacts of extreme weather events on DOM in surface water and downstream treatment processes, and to improve membrane filtration efficiency and CECs oxidation efficiency during water reclamation with ozone. Surface water quality, air quality and hydrologic flow rate data were used to quantify changes in DOM and turbidity following dust storms, flooding, or runoff from wildfire burn areas in central Arizona. The subsequent impacts to treatment processes and public perception of water quality were also discussed. Findings showed a correlation between dust storm events and change in surface water turbidity (R2=0.6), attenuation of increased DOM through reservoir systems, a 30-40% increase in organic carbon and a 120-600% increase in turbidity following severe flooding, and differing impacts of upland and lowland wildfires. The use of ozone to reduce membrane fouling caused by vesicles (a subcomponent of EPS) and oxidize CECs through increased hydroxyl radical (HO●) production was investigated. An "ozone dose threshold" was observed above which addition of hydrogen peroxide increased HO● production; indicating the presence of ambient promoters in wastewater. Ozonation of CECs in secondary effluent over titanium dioxide or activated carbon did not increase radial production. Vesicles fouled ultrafiltration membranes faster (20 times greater flux decline) than polysaccharides, fatty acids, or NOM. Based upon the estimated carbon distribution of secondary effluent, vesicles could be responsible for 20-60% of fouling during ultrafiltration and may play a vital role in other environmental processes as well. Ozone reduced vesicle-caused membrane fouling that, in conjunction with the presence of ambient promoters, helps to explain why low ozone dosages improve membrane flux during full-scale water reclamation.
Date Created
2014
Agent

Single cell RT-qPCR based ocean environmental sensing device development

152297-Thumbnail Image.png
Description
This thesis research focuses on developing a single-cell gene expression analysis method for marine diatom Thalassiosira pseudonana and constructing a chip level tool to realize the single cell RT-qPCR analysis. This chip will serve as a conceptual foundation for future

This thesis research focuses on developing a single-cell gene expression analysis method for marine diatom Thalassiosira pseudonana and constructing a chip level tool to realize the single cell RT-qPCR analysis. This chip will serve as a conceptual foundation for future deployable ocean monitoring systems. T. pseudonana, which is a common surface water microorganism, was detected in the deep ocean as confirmed by phylogenetic and microbial community functional studies. Six-fold copy number differences between 23S rRNA and 23S rDNA were observed by RT-qPCR, demonstrating the moderate functional activity of detected photosynthetic microbes in the deep ocean including T. pseudonana. Because of the ubiquity of T. pseudonana, it is a good candidate for an early warning system for ocean environmental perturbation monitoring. This early warning system will depend on identifying outlier gene expression at the single-cell level. An early warning system based on single-cell analysis is expected to detect environmental perturbations earlier than population level analysis which can only be observed after a whole community has reacted. Preliminary work using tube-based, two-step RT-qPCR revealed for the first time, gene expression heterogeneity of T. pseudonana under different nutrient conditions. Heterogeneity was revealed by different gene expression activity for individual cells under the same conditions. This single cell analysis showed a skewed, lognormal distribution and helped to find outlier cells. The results indicate that the geometric average becomes more important and representative of the whole population than the arithmetic average. This is in contrast with population level analysis which is limited to arithmetic averages only and highlights the value of single cell analysis. In order to develop a deployable sensor in the ocean, a chip level device was constructed. The chip contains surface-adhering droplets, defined by hydrophilic patterning, that serve as real-time PCR reaction chambers when they are immersed in oil. The chip had demonstrated sensitivities at the single cell level for both DNA and RNA. The successful rate of these chip-based reactions was around 85%. The sensitivity of the chip was equivalent to published microfluidic devices with complicated designs and protocols, but the production process of the chip was simple and the materials were all easily accessible in conventional environmental and/or biology laboratories. On-chip tests provided heterogeneity information about the whole population and were validated by comparing with conventional tube based methods and by p-values analysis. The power of chip-based single-cell analyses were mainly between 65-90% which were acceptable and can be further increased by higher throughput devices. With this chip and single-cell analysis approaches, a new paradigm for robust early warning systems of ocean environmental perturbation is possible.
Date Created
2013
Agent

Contaminants of emerging concern in U.S. sewage sludges and forecasting of associated ecological and human health risks using sewage epidemiology approaches

152255-Thumbnail Image.png
Description
Many manmade chemicals used in consumer products are ultimately washed down the drain and are collected in municipal sewers. Efficient chemical monitoring at wastewater treatment (WWT) plants thus may provide up-to-date information on chemical usage rates for epidemiological assessments. The

Many manmade chemicals used in consumer products are ultimately washed down the drain and are collected in municipal sewers. Efficient chemical monitoring at wastewater treatment (WWT) plants thus may provide up-to-date information on chemical usage rates for epidemiological assessments. The objective of the present study was to extrapolate this concept, termed 'sewage epidemiology', to include municipal sewage sludge (MSS) in identifying and prioritizing contaminants of emerging concern (CECs). To test this the following specific aims were defined: i) to screen and identify CECs in nationally representative samples of MSS and to provide nationwide inventories of CECs in U.S. MSS; ii) to investigate the fate and persistence in MSS-amended soils, of sludge-borne hydrophobic CECs; and iii) to develop an analytical tool relying on contaminant levels in MSS as an indicator for identifying and prioritizing hydrophobic CECs. Chemicals that are primarily discharged to the sewage systems (alkylphenol surfactants) and widespread persistent organohalogen pollutants (perfluorochemicals and brominated flame retardants) were analyzed in nationally representative MSS samples. A meta-analysis showed that CECs contribute about 0.04-0.15% to the total dry mass of MSS, a mass equivalent of 2,700-7,900 metric tonnes of chemicals annually. An analysis of archived mesocoms from a sludge weathering study showed that 64 CECs persisted in MSS/soil mixtures over the course of the experiment, with half-lives ranging between 224 and >990 days; these results suggest an inherent persistence of CECs that accumulate in MSS. A comparison of the spectrum of chemicals (n=52) analyzed in nationally representative biological specimens from humans and MSS revealed 70% overlap. This observed co-occurrence of contaminants in both matrices suggests that MSS may serve as an indicator for ongoing human exposures and body burdens of pollutants in humans. In conclusion, I posit that this novel approach in sewage epidemiology may serve to pre-screen and prioritize the several thousands of known or suspected CECs to identify those that are most prone to pose a risk to human health and the environment.
Date Created
2013
Agent

Use of ozonation and constructed wetlands to remove contaminants of emerging concern from wastewater effluent

152167-Thumbnail Image.png
Description
Contaminants of emerging concern (CECs) present in wastewater effluent can threat its safe discharge or reuse. Additional barriers of protection can be provided using advanced or natural treatment processes. This dissertation evaluated ozonation and constructed wetlands to remove CECs from

Contaminants of emerging concern (CECs) present in wastewater effluent can threat its safe discharge or reuse. Additional barriers of protection can be provided using advanced or natural treatment processes. This dissertation evaluated ozonation and constructed wetlands to remove CECs from wastewater effluent. Organic CECs can be removed by hydroxyl radical formed during ozonation, however estimating the ozone demand of wastewater effluent is complicated due to the presence of reduced inorganic species. A method was developed to estimate ozone consumption only by dissolved organic compounds and predict trace organic oxidation across multiple wastewater sources. Organic and engineered nanomaterial (ENM) CEC removal in constructed wetlands was investigated using batch experiments and continuous-flow microcosms containing decaying wetland plants. CEC removal varied depending on their physico-chemical properties, hydraulic residence time (HRT) and relative quantities of plant materials in the microcosms. At comparable HRTs, ENM removal improved with higher quantity of plant materials due to enhanced sorption which was verified in batch-scale studies with plant materials. A fate-predictive model was developed to evaluate the role of design loading rates on organic CEC removal. Areal removal rates increased with hydraulic loading rates (HLRs) and carbon loading rates (CLRs) unless photolysis was the dominant removal mechanism (e.g. atrazine). To optimize CEC removal, wetlands with different CLRs can be used in combination without lowering the net HLR. Organic CEC removal in denitrifying conditions of constructed wetlands was investigated and selected CECs (e.g. estradiol) were found to biotransform while denitrification occurred. Although level of denitrification was affected by HRT, similar impact on estradiol was not observed due to a dominant effect from plant biomass quantity. Overall, both modeling and experimental findings suggest considering CLR as an equally important factor with HRT or HLR to design constructed wetlands for CEC removal. This dissertation provided directions to select design parameters for ozonation (ozone dose) and constructed wetlands (design loading rates) to meet organic CEC removal goals. Future research is needed to understand fate of ENMs during ozonation and quantify the contributions from different transformation mechanisms occurring in the wetlands to incorporate in a model and evaluate the effect of wetland design.
Date Created
2013
Agent