Serial crystallography at synchrotrons and X-ray lasers

130307-Thumbnail Image.png
Description
Recently we have seen rapid progress in the serial crystallography (SC) method at X-ray free-electron lasers (XFELs). Injection of thousands of protein microcrystals into the ∼10[superscript 12] photons of few-femtosecond XFEL pulses has allowed the structure determination of crystals grown

Recently we have seen rapid progress in the serial crystallography (SC) method at X-ray free-electron lasers (XFELs). Injection of thousands of protein microcrystals into the ∼10[superscript 12] photons of few-femtosecond XFEL pulses has allowed the structure determination of crystals grown in vivo, or of submicron size, and from challenging targets such as membrane proteins. For time-resolved studies, the small crystal size allows for rapid diffusive saturation in mix-and-inject analysis of biochemical reactions, and full optical saturation of the sample by a pump laser in studies of light-driven proteins. The ability to outrun most radiation damage avoids the need for sample cooling and its artifacts, allowing studies of molecular machines at work in their correct room-temperature thermal bath or a controlled chemical environment.
Date Created
2017-03
Agent

Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography

130318-Thumbnail Image.png
Description
Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and

Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.
Date Created
2016-08-22
Agent