Nutritional imbalance suppresses migratory phenotypes of the Mongolian locust (Oedaleus asiaticus)

130272-Thumbnail Image.png
Description
For many species, migration evolves to allow organisms to access better resources. However, the proximate factors that trigger these developmental changes, and how and why these vary across species, remain poorly understood. One prominent hypothesis is that poor-quality food promotes

For many species, migration evolves to allow organisms to access better resources. However, the proximate factors that trigger these developmental changes, and how and why these vary across species, remain poorly understood. One prominent hypothesis is that poor-quality food promotes development of migratory phenotypes and this has been clearly shown for some polyphenic insects. In other animals, particularly long-distance bird migrants, it is clear that high-quality food is required to prepare animals for a successful migration. We tested the effect of diet quality on the flight behaviour and morphology of the Mongolian locust, Oedaleus asiaticus. Locusts reared at high population density and fed low-N grass (performance-enhancing for this species) had enhanced migratory morphology relative to locusts fed high-N grass. Furthermore, locusts fed synthetic diets with an optimal 1 : 2 protein : carbohydrate ratio flew for longer times than locusts fed diets with lower or higher protein : carbohydrate ratios. In contrast to the hypothesis that performance-degrading food should enhance migration, our results support the more nuanced hypothesis that high-quality diets promote development of migratory characteristics when migration is physiologically challenging.
Date Created
2017-06-07
Agent

Response of the Abundance of Key Soil Microbial Nitrogen-Cycling Genes to Multi-Factorial Global Changes

130336-Thumbnail Image.png
Description
Multiple co-occurring environmental changes are affecting soil nitrogen cycling processes, which are mainly mediated by microbes. While it is likely that various nitrogen-cycling functional groups will respond differently to such environmental changes, very little is known about their relative responsiveness.

Multiple co-occurring environmental changes are affecting soil nitrogen cycling processes, which are mainly mediated by microbes. While it is likely that various nitrogen-cycling functional groups will respond differently to such environmental changes, very little is known about their relative responsiveness. Here we conducted four long-term experiments in a steppe ecosystem by removing plant functional groups, mowing, adding nitrogen, adding phosphorus, watering, warming, and manipulating some of their combinations. We quantified the abundance of seven nitrogen-cycling genes, including those for fixation (nifH), mineralization (chiA), nitrification (amoA of ammonia-oxidizing bacteria (AOB) or archaea (AOA)), and denitrification (nirS, nirK and nosZ). First, for each gene, we compared its sensitivities to different environmental changes and found that the abundances of various genes were sensitive to distinct and different factors. Overall, the abundances of nearly all genes were sensitive to nitrogen enrichment. In addition, the abundances of the chiA and nosZ genes were sensitive to plant functional group removal, the AOB-amoA gene abundance to phosphorus enrichment when nitrogen was added simultaneously, and the nirS and nirK gene abundances responded to watering. Second, for each single- or multi-factorial environmental change, we compared the sensitivities of the abundances of different genes and found that different environmental changes primarily affected different gene abundances. Overall, AOB-amoA gene abundance was most responsive, followed by the two denitrifying genes nosZ and nirS, while the other genes were less sensitive. These results provide, for the first time, systematic insights into how the abundance of each type of nitrogen-cycling gene and the equilibrium state of all these nitrogen-cycling gene abundances would shift under each single- or multi-factorial global change.
Date Created
2013-10-04
Agent

Grasshoppers Regulate N: P Stoichiometric Homeostasis by Changing Phosphorus Contents in Their Frass

130345-Thumbnail Image.png
Description
Nitrogen (N) and phosphorus (P) are important limiting nutrients for plant production and consumer performance in a variety of ecosystems. As a result, the N:P stoichiometry of herbivores has received increased attention in ecology. However, the mechanisms by which herbivores

Nitrogen (N) and phosphorus (P) are important limiting nutrients for plant production and consumer performance in a variety of ecosystems. As a result, the N:P stoichiometry of herbivores has received increased attention in ecology. However, the mechanisms by which herbivores maintain N:P stoichiometric homeostasis are poorly understood. Here, using a field manipulation experiment we show that the grasshopper Oedaleus asiaticus maintains strong N:P stoichiometric homeostasis regardless of whether grasshoppers were reared at low or high density. Grasshoppers maintained homeostasis by increasing P excretion when eating plants with higher P contents. However, while grasshoppers also maintained constant body N contents, we found no changes in N excretion in response to changing plant N content over the range measured. These results suggest that O. asiaticus maintains P homeostasis primarily by changing P absorption and excretion rates, but that other mechanisms may be more important for regulating N homeostasis. Our findings improve our understanding of consumer-driven P recycling and may help in understanding the factors affecting plant-herbivore interactions and ecosystem processes in grasslands.
Date Created
2014-08-04
Agent