Towards high-efficiency thin-film solar cells: from theoretical analysis to experimental exploration

153994-Thumbnail Image.png
Description
GaAs single-junction solar cells have been studied extensively in recent years, and have reached over 28 % efficiency. Further improvement requires an optically thick but physically thin absorber to provide both large short-circuit current and high open-circuit voltage. By detailed

GaAs single-junction solar cells have been studied extensively in recent years, and have reached over 28 % efficiency. Further improvement requires an optically thick but physically thin absorber to provide both large short-circuit current and high open-circuit voltage. By detailed simulation, it is concluded that ultra-thin GaAs cells with hundreds of nanometers thickness and reflective back scattering can potentially offer efficiencies greater than 30 %. The 300 nm GaAs solar cell with AlInP/Au reflective back scattering is carefully designed and demonstrates an efficiency of 19.1 %. The device performance is analyzed using the semi-analytical model with Phong distribution implemented to account for non-Lambertian scattering. A Phong exponent m of ~12, a non-radiative lifetime of 130 ns, and a specific series resistivity of 1.2 Ω·cm2 are determined.

Thin-film CdTe solar cells have also attracted lots of attention due to the continuous improvements in their device performance. To address the issue of the lower efficiency record compared to detailed-balance limit, the single-crystalline Cd(Zn)Te/MgCdTe double heterostructures (DH) grown on InSb (100) substrates by molecular beam epitaxy (MBE) are carefully studied. The Cd0.9946Zn0.0054Te alloy lattice-matched to InSb has been demonstrated with a carrier lifetime of 0.34 µs observed in a 3 µm thick Cd0.9946Zn0.0054Te/MgCdTe DH sample. The substantial improvement of lifetime is due to the reduction in misfit dislocation density. The recombination lifetime and interface recombination velocity (IRV) of CdTe/MgxCd1-xTe DHs are investigated. The IRV is found to be dependent on both the MgCdTe barrier height and width due to the thermionic emission and tunneling processes. A record-long carrier lifetime of 2.7 µs and a record-low IRV of close to zero have been confirmed experimentally.

The MgCdTe/Si tandem solar cell is proposed to address the issue of high manufacturing costs and poor performance of thin-film solar cells. The MBE grown MgxCd1-xTe/MgyCd1-yTe DHs have demonstrated the required bandgap energy of 1.7 eV, a carrier lifetime of 11 ns, and an effective IRV of (1.869 ± 0.007) × 103 cm/s. The large IRV is attributed to thermionic-emission induced interface recombination. These understandings can be applied to fabricating the high-efficiency low-cost MgCdTe/Si tandem solar cell.
Date Created
2015
Agent

Minority Carrier Lifetime of Lattice-Matched CdZnTe Alloy Grown on InSb Substrates Using Molecular Beam Epitaxy

129281-Thumbnail Image.png
Description

A CdZnTe/MgCdTe double-heterostructure (DH) consisting of a 3 μm thick Cd0.9946 Zn0.0054Te middle layer that is lattice-matched to an InSb substrate has been grown using molecular beam epitaxy. A long carrier lifetime of 3.4 × 102 ns has been demonstrated at room temperature, which

A CdZnTe/MgCdTe double-heterostructure (DH) consisting of a 3 μm thick Cd0.9946 Zn0.0054Te middle layer that is lattice-matched to an InSb substrate has been grown using molecular beam epitaxy. A long carrier lifetime of 3.4 × 102 ns has been demonstrated at room temperature, which is approximately three times as long as that of a CdTe/MgCdTe DH with identical layer thickness. This substantial improvement is due to the reduction in misfit dislocation density in the CdZnTe alloy. In contrast, a CdTe/MgCdTe DH with 3 μm thick CdTe layer grown on an InSb substrate exhibits a strain relaxation of ∼30%, which leads to a wider x-ray diffraction peak, a weaker integrated photoluminescence intensity, and a shorter minority carrier lifetime of 1.0 × 102 ns. These findings indicate that CdZnTe lattice-matched to InSb has great potential as applied to high-efficiency solar cells as well as virtual substrates for high-performance large-area HgCdTe focal plane arrays.

Date Created
2015-01-01
Agent

CdSe/CdTe Type-II Superlattices Grown on GaSb (001) Substrates by Molecular Beam Epitaxy

130231-Thumbnail Image.png
Date Created
2012
Agent

Long-Wave Infrared nBn Photodetectors Based on InAs/InAsSb Type-II Superlattices

130236-Thumbnail Image.png
Date Created
2012
Agent

Minority Carrier Lifetime of Lattice-Matched CdZnTe Alloy Grown on InSb Substrates Using Molecular Beam Epitaxy

130242-Thumbnail Image.png
Date Created
2015
Agent

Ultra-Thin GaAs Single-Junction Solar Cells Integrated With a Reflective Back Scattering Layer

130243-Thumbnail Image.png
Date Created
2014
Agent

Molecular Beam Epitaxy Using Bismuth as a Constituent in InAs and a Surfactant in InAs/InAsSb Superlattices

130244-Thumbnail Image.png
Date Created
2014
Agent