Effect of ERK1/2 Loss-of-Function During Basal Forebrain Cholinergic Neuron Development

Description

The ERK1/2 cell signaling pathway is highly conserved and a prominent regulator of processes like cell proliferation, differentiation, and survival. During nervous system development, the ERK1/2 cascade is activated by the binding of growth factors to receptor tyrosine kinases, leading

The ERK1/2 cell signaling pathway is highly conserved and a prominent regulator of processes like cell proliferation, differentiation, and survival. During nervous system development, the ERK1/2 cascade is activated by the binding of growth factors to receptor tyrosine kinases, leading to the sequential phosphorylation of intracellular protein kinases in the pathway and eventually ERK1 and ERK2, the effectors of the pathway. Well-defined germline mutations resulting in hyperactive ERK1/2 signaling have been implicated in a group of neurodevelopmental disorders called RASopathies. RASopathic individuals often display features such as developmental delay, intellectual disability, cardio-facial abnormalities, and motor deficits. In addition, loss-of-function in ERK1/2 can lead to neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability. To better understand the pathology of these neurodevelopmental disorders, the role of ERK1/2 must be examined during the development of specific neuronal and glial subtypes. In this study, we bred transgenic mice with conditional deletion of ERK1/2 in cholinergic neuronal populations to investigate whether ERK1/2 mediates the survival or activity of basal forebrain and striatal cholinergic neurons during postnatal development. By postnatal day 10, we found that ERK1/2 did not seem to mediate cholinergic neuron number within the basal forebrain or striatum. In addition, we showed that expression of FosB, a neuronal activity-dependent transcription factor and target of ERK1/2, was not yet observed in cholinergic neurons within either of these anatomical regions by P10. Finally, our preliminary data suggested that FosB expression within layer IV of the somatosensory cortex, a target domain for basal forebrain cholinergic projections, also did not appear to be mediated by ERK1/2 signaling. However, since cholinergic neuron development is not yet complete by P10, future work should explore whether ERK1/2 plays any role in the long-term survival and function of basal forebrain and striatal cholinergic neurons in adulthood. This will hopefully provide more insight into the pathology of neurodevelopmental disorders and inform future therapeutic strategies.

Date Created
2023-05
Agent

Following the Diagnosis Journey of a Patient with an Unknown Type of Dementia

Description

Alzheimer’s disease (AD) is a devastating disorder that affects the lives of both patients and their loved ones. While it is believed that AD is due to a buildup of amyloid plaques in the brain that eventually lead to the

Alzheimer’s disease (AD) is a devastating disorder that affects the lives of both patients and their loved ones. While it is believed that AD is due to a buildup of amyloid plaques in the brain that eventually lead to the formation of neurofibrillary tangles (NFTs) and result in neurodegeneration, there are many theories that attempt to define the causes of AD. This paper investigates the amyloid and tau theories in more detail, including how these proteins can spread in the brain. It will also take a look into other potential theories that could contribute to AD symptoms such as vascular issues or neuroinflammation. Frontotemporal dementia (FTD) is another form of dementia, albeit much rarer than AD, that is typically characterized by symptoms that follow the opposite progression of AD: behavior and judgement are affected before memory. In addition, FTD is closely related to amyotrophic lateral sclerosis (ALS), a movement disorder that is caused by a loss of motor neurons that results in loss of muscle control. This paper will also examine how FTD and ALS are related, as well as theories behind the potential causes of these disorders. Finally, this paper will examine a patient who exhibits signs and symptoms of both disorders to attempt to determine the potential diagnosis.

Date Created
2023-05
Agent

Validation of Early Synapse Loss in a Mouse Model of Frontotemporal Dementia

171855-Thumbnail Image.png
Description
Frontotemporal dementia (FTD) is a neurodegenerative disease that causes deterioration of the frontal and temporal lobe. Detection is pivotal in preventative care, but current screening methods are not sensitive enough to detect early-stage disease. Synapse loss has been implicated as

Frontotemporal dementia (FTD) is a neurodegenerative disease that causes deterioration of the frontal and temporal lobe. Detection is pivotal in preventative care, but current screening methods are not sensitive enough to detect early-stage disease. Synapse loss has been implicated as an early contributor to neurodegeneration and subsequent atrophy. Fluorine-18 fluorodeoxy-glucose (18[F]-FDG) positron emission tomography (PET) is a noninvasive imaging biomarker method frequently used as a surrogate measure for synaptic activity in the brain. PET scans using 18[F]-FDG tracers were performed on progranulin (GRN) knockout mice (Grn-/-), a commonly used mouse model of FTD. Interestingly, 18[F]-FDG PET at both, 9 months and 11 months, two time points considered early symptomatic in the Grn-/- mouse model, did not detect significant changes in synaptic activity, suggesting that no synapse loss has occurred yet at these early stages of FTD in this model. After the last PET scan, the imaging data were validated via fluorescent immunostaining for pre- and post-synaptic marker proteins SV2 and PSD95, respectively. Quantifications in several brain regions, including the frontal cortex, did not reveal any significant differences in protein expression, supporting the lack of aberrant 18[F]-FDG tracer uptake measured via PET. Additional examinations for activated microglia, a known aspect of FTD pathology recently observed in end Grn-/- mice, did not reveal microglia activation as measured via CD68 immunostaining. These data suggest that Grn-/- mice at 9 and 11 months do not exhibit synaptic dysfunction in the frontal cortex when measured via 18[F]-FDG PET or immunostaining of pre- and postsynaptic marker proteins SV2 and PSD95.
Date Created
2022
Agent

Prenatal Maternal Stress Alters Alzheimer’s Disease Pathology in 12-Month Old 3xTg Alzheimer’s Disease Mouse Model

Description

Alzheimer’s Disease (AD) is the most prevalent form of dementia and is the sixth leading cause of death in the elderly. Evidence suggests that forms of stress, including prenatal maternal stress (PMS), could exacerbate AD development. To better understand the

Alzheimer’s Disease (AD) is the most prevalent form of dementia and is the sixth leading cause of death in the elderly. Evidence suggests that forms of stress, including prenatal maternal stress (PMS), could exacerbate AD development. To better understand the mechanism linking PMS and AD, we investigated behavior and specific epigenetic markers of the 3xTg-AD mouse model compared to aged-controls in offspring of stressed mothers and non-stressed mothers.

Date Created
2022-12
Agent

Elucidating the Effects of Dietary Choline Deficiency on the Hippocampal and Plasma Proteomes of Non-Transgenic and 3xTg-AD Mice

168690-Thumbnail Image.png
Description
Alzheimer’s disease (AD) is one of the most prevalent neurodegenerative diseases worldwide, with no effective treatments or preventions. Evidence suggests that environmental factors, including dietary nutrients, contribute to the etiology of AD. Choline is an essential nutrient found in many

Alzheimer’s disease (AD) is one of the most prevalent neurodegenerative diseases worldwide, with no effective treatments or preventions. Evidence suggests that environmental factors, including dietary nutrients, contribute to the etiology of AD. Choline is an essential nutrient found in many common foods. Choline is produced endogenously, but not at levels sufficient for healthy metabolic function and thus requires dietary supplementation. Literature shows that ~90% of Americans do not meet the adequate intake threshold for dietary choline consumption and therefore are dietary choline-deficient. While dietary choline supplementation throughout life has been shown to have significant health benefits, such as reducing AD pathology and improving cognition in a mouse model of AD, the impacts of dietary choline deficiency are unknown. Experiments were designed to understand the effects of dietary choline deficiency in healthy, non-transgenic mice (NonTg) and in the 3xTg-AD mouse model of AD. From 3 to 12 months of age, mice received either adequate choline (ChN) in the diet or were put on a choline-deficient (Ch-) diet. A Ch- diet leads to significant weight gain throughout life in both the NonTg and 3xTg-AD mice, with AD mice showing a greater increase. Additionally, impaired glucose metabolism, which is a risk factor for AD, was induced in both NonTg Ch- and 3xTg-AD Ch- mice. Interestingly, Ch- induced cardiomegaly in 3xTg-AD mice and elevated markers of cardiac dysfunction in NonTg mice to similar levels in 3xTg-AD mice. Finally, Ch- exacerbated amyloid-β plaque pathology and tau hyperphosphorylation in the hippocampus and cortex of 3xTg-AD mice. Proteomic analyses revealed Ch- induced changes in hippocampal proteins associated with postsynaptic receptor regulation, microtubule stabilization, and neuronal development, as well as well-known AD-associated proteins (MAPT, BACE1, MECP2, CREBBP). Proteomic analyses also revealed Ch- induced changes of plasma proteins associated with secondary pathologies of AD including inflammation, immune response insulin metabolism, and mitochondrial dysfunction (SAA1, SAA2, IDE, HSPD1, VDAC-1, VDACE-2). Taken together, these data suggest that dietary choline deficiency induces system-wide cellular and molecular dysfunction associated with AD across several pathogenic axes, through proteomic changes not only in the hippocampus but also in the plasma.
Date Created
2022
Agent

Elucidating the Role of Neuronal RIPK1 in a Novel Conditional Mouse Model

165821-Thumbnail Image.png
Description

Receptor-interacting serine/threonine protein kinase 1 (RIPK1) is an enzyme whose interaction with tumor necrosis factor receptor 1 (TNFR1) has been found to regulate cell death pathways, such as apoptosis and necroptosis, and neuroinflammation. Accumulating evidence in the past two decades

Receptor-interacting serine/threonine protein kinase 1 (RIPK1) is an enzyme whose interaction with tumor necrosis factor receptor 1 (TNFR1) has been found to regulate cell death pathways, such as apoptosis and necroptosis, and neuroinflammation. Accumulating evidence in the past two decades has pointed to increased RIPK1 activity in various degenerative disorders, including Amyotrophic Lateral Sclerosis (ALS), stroke, traumatic brain injury (TBI) and Alzheimer’s Disease (AD). Given the work showing elevated RIPK1 in neurodegenerative disorders, to further understand the role of RIPK1 in disease pathogenesis, we created a conditional mouse overexpressing neuronal RIPK1 on a C57BL/6 background. These conditional transgenic mice overexpress murine RIPK1 under the CAMK2a neuronal promoter and the transgene is under the control of doxycycline. The removal of doxycycline turns on the RIPK1 transgene. Two cohorts of transgenic mice overexpressing neuronal RIPK1 (RIPK1 OE) were produced, and both had doxycycline removed at post-natal day 21. One cohort was behaviorally tested at 3-months-of-age and the second cohort was tested at 9-months-of-age. Behavioral testing included use of the RotaRod and the Morris water maze to assess motor coordination and spatial cognition, respectively. We found that the RIPK1 OE mice showed no deficits in motor coordination at either age but displayed spatial reference learning and memory deficits at 3- and 9-months-of-age. A subset of mice from two independent cohorts were utilized to assess RIPK1 levels and neuronal number. In these two cohorts of mice used for postmortem analysis, we found that at 3 months of age, ~2 months after transgene activation, RIPK1 levels are not higher in the hippocampus or cortex of the RIPK1 OE mice, however at 9 months, ~8 months after transgene activation, RIPK1 levels are significantly higher in the hippocampus and cortex of RIPK1 OE mice compared to the NonTg counterparts. A subset of tissue was stained against the neuronal marker NeuN. Using unbiased stereology to quantify hippocampal CA1 pyramidal neurons, we found no neuronal loss in the 3-month-old RIPK1 OE mice, but a 34.01% reduction in NeuN+ neuron count in 9-month-old RIPK1 OE mice. Collectively our data shows that RIPK1 overexpression impairs spatial reference learning and memory and reduces neuron number in the CA1 of the hippocampus, underlining the potential of RIPK1 as a target for ameliorating CNS pathology.

Date Created
2022-05
Agent

Prenatal Maternal Stress Exacerbates Alzheimer’s Disease Through Epigenetic Changes

165094-Thumbnail Image.png
Description

Stress and stress-related disorders increase the risk of Alzheimer’s Disease (AD) later in life. Some evidence suggests that prenatal maternal stress (PMS) can exacerbate AD. However, the effects of PMS on AD have not been as well studied. Epigenetic changes

Stress and stress-related disorders increase the risk of Alzheimer’s Disease (AD) later in life. Some evidence suggests that prenatal maternal stress (PMS) can exacerbate AD. However, the effects of PMS on AD have not been as well studied. Epigenetic changes have been shown to contribute to AD and this is a possible mechanism by which PMS could accelerate AD. Thus, the present study aimed to investigate the effects of PMS on histone modifications, which change gene expression through alterations made to chromatin structure and thereby DNA accessibility. We utilized female 3xTG-AD mice and performed spatial and learning memory assessments between 5 and 6 months of age. Tissue was analyzed for AD pathology and epigenetic markers at 6 months of age were assessed PMS was shown to influence histone modifications H3K4me3 and H3K27me3 in a manner known to promote the expression of genes associated with neurodegeneration. Further, PMS impaired spatial memory, and, interestingly, the data resembled the pattern of H3K4me3 expression across groups, suggesting that this epigenetic modification could modulate the learning and memory effects of PMS. While the presence of hallmark AD pathologies were not accelerated by PMS, PMS did increase early tau phosphorylation events. Thus, this evidence suggests that PMS impairs spatial memory through epigenetic modifications and may potentially exacerbate AD later in life.

Date Created
2022-05
Agent

Discrepancies in the Morris water maze versus the IntelliCage in the APP/PS1 mouse model of Alzheimer’s disease; a sex-based examination

131267-Thumbnail Image.png
Description
Dementia is a collective term used to describe symptoms of cognitive impairment in learning and memory. The most prevalent form of dementia is Alzheimer’s disease (AD). In order to understand the pathological mechanisms associated with AD, animal models have been

Dementia is a collective term used to describe symptoms of cognitive impairment in learning and memory. The most prevalent form of dementia is Alzheimer’s disease (AD). In order to understand the pathological mechanisms associated with AD, animal models have been created. These various mouse models replicate the pathology found in humans with AD. As a consequence of the fact that this disease impairs cognitive abilities in humans, testing apparatuses have been developed to measure impaired cognition in animal models. One of the most common behavioral apparatuses that has been in use for nearly 40 years is the Morris water maze (MWM). In the MWM, animals are tasked to find a hidden platform in a pool of water and thereby are subjected to stress that can unpredictably influence cognitive performance. In an attempt to circumvent such issues, the IntelliCage was designed to remove the external stress of the human experimenter and provide a social environment during task assessment which is fully automated and programable. Additionally, the motivation is water consumption, which is less stressful than escaping a pool. This study examined the difference in performance of male and female cohorts of APP/PS1 and non-transgenic (NonTg) mice in both the MWM and the IntelliCage. Initially, 12-month-old male and female APP/PS1 and NonTg mice were tested in the hippocampal-dependent MWM maze for five days. Next, animals were moved to the IntelliCage and underwent 39 days of testing to assess prefrontal cortical and hippocampal function. The results of this experiment showed significant sex differences in task performance, but inconsistency between the two testing paradigms. Notably, males performed significantly better in the MWM, which is consistent with prior research. Interestingly however, APP/PS1 females showed higher Amyloid-β plaque load and performed significantly better in the more complex tasks of the IntelliCage. This suggests that Aβ plaque load may not directly contribute to cognitive deficits, which is consistent with recent reports in humans with AD. Collectively, these results should inform scientists about the caveats of behavioral paradigms and will aid in determining translation to the human condition.
Date Created
2020-05
Agent

Cellular Evaluation of Postnatal Hippocampus in Down Syndrome

131845-Thumbnail Image.png
Description
Down Syndrome (DS), caused by the trisomy 21, is the most common intellectual developmental disorder. Children with DS display deficits in ample memory tasks attributed to alterations in memory-related brain structures, including the hippocampus. Although, many studies in DS

Down Syndrome (DS), caused by the trisomy 21, is the most common intellectual developmental disorder. Children with DS display deficits in ample memory tasks attributed to alterations in memory-related brain structures, including the hippocampus. Although, many studies in DS focused on development of the brain during prenatal stages, little is known about the cellular evolution of the hippocampus in postnatal periods in DS. Therefore, here we examined the neurochemical spatiotemporal development of neuronal profiles in pediatric postnatal hippocampus in DS and neurotypical developing (NTD) controls. A quantitative and qualitative neuronal distribution was performed in hippocampal sections containing the proper hippocampus, dentate gyrus (DG) and subiculum obtained at autopsy from 1 day to 3 year-old infants in DS and NTD age-matched controls using antibodies against the non-phosphorylated high-molecular-weight neurofilament, a marker of differentiated neurons (SMI-32), the calcium binding protein calbindin D-28k (CAB), and the migration neuronal marker microtubule-associated protein doublecortin (DCX). In addition, Aβ and phosphorylated tau was also immunohistochemically examined in the hippocampus using 6E10, Aβ1-42 and the phosphorylated CP-13 and AT8 tau antibodies, respectively. We found APP/Aβ immunoreactivity, but not Aβ1-42, in diffuse-like plaques in the hippocampus from 1 day to 3 year old infants and young children in DS and NTD cases. By contrast, phosphorylated fetal tau was not immunodetected in the hippocampus at any age in both groups. SMI-32 immunolabeled neurons were observed in the hilus, CA2 field and subiculum in early postnatal cases in DS and NTD. The number of SMI-32 immunoreactive (ir) granule cells in the DG were significantly decreased in DS compared to NTD. While a strong DCX immunoreactivity was observed in the granule cells of the DG in the hippocampus in both groups at early postnatal stages, a more accelerated reduction was observed in DS. CAB-ir neuronal distribution in the postnatal hippocampus was comparable between the youngest and the oldest infants in NTD and DS. In addition, strong positive correlations were observed between DG-DCX-ir cells numbers and both DG-CAB-ir and DG-SMI-32-ir values as well as negative correlations between the brain weight and DG granule cell-ir numbers for all markers in DS. These findings suggest that neuronal maturation and migration in the hippocampus are compromised in early postnatal stages of the development in DS and may contribute to the intellectual disabilities observed in this group.
Date Created
2020-05
Agent

Removing Neuronal PRAS40 Exacerbates Alzheimer's Disease Pathology in a Mouse Model

132958-Thumbnail Image.png
Description
Alzheimer’s disease (AD) is characterized by the aberrant accumulation and aggregation of proteins that in turn contribute to learning and memory deficits. The mammalian target of rapamycin (mTOR) plays an essential role in regulating the synthesis and degradation of proteins

Alzheimer’s disease (AD) is characterized by the aberrant accumulation and aggregation of proteins that in turn contribute to learning and memory deficits. The mammalian target of rapamycin (mTOR) plays an essential role in regulating the synthesis and degradation of proteins that contribute to cell growth and learning and memory. Hyperactivity of mTOR can cause detrimental effects to protein homeostasis and has been linked to AD. The proline-rich Akt-substrate 40 kDa (PRAS40) is a negative regulator of mTOR, as it binds to mTOR directly, reducing its activity. Upon phosphorylation, PRAS40 detaches from mTOR thereby releasing its inhibitory effects. Increased phosphorylation of PRAS40, and a subsequent increase in mTOR activity has been linked to diabetes, cancer, and other conditions; however, PRAS40’s direct role in the pathogenesis of AD is still unclear. To investigate the role of PRAS40 in AD pathology, we generated a PRAS40 conditional knockout mouse model and, using a neuronal-specific Cre recombinase, selectively removed PRAS40 from APP/PS1 mice. Removing neuronal PRAS40 exacerbated Abeta levels and plaque load but paradoxically had no significant effects on mTOR signaling. Mechanistically, the increase in Abeta pathology was linked to a decrease in autophagy function. Our data highlight a primary role of PRAS40 in the pathogenesis of AD.
Date Created
2019-05
Agent