Dexterous manipulation: sensorimotor learning and control

152011-Thumbnail Image.png
Description
Humans' ability to perform fine object and tool manipulation is a defining feature of their sensorimotor repertoire. How the central nervous system builds and maintains internal representations of such skilled hand-object interactions has attracted significant attention over the past three

Humans' ability to perform fine object and tool manipulation is a defining feature of their sensorimotor repertoire. How the central nervous system builds and maintains internal representations of such skilled hand-object interactions has attracted significant attention over the past three decades. Nevertheless, two major gaps exist: a) how digit positions and forces are coordinated during natural manipulation tasks, and b) what mechanisms underlie the formation and retention of internal representations of dexterous manipulation. This dissertation addresses these two questions through five experiments that are based on novel grip devices and experimental protocols. It was found that high-level representation of manipulation tasks can be learned in an effector-independent fashion. Specifically, when challenged by trial-to-trial variability in finger positions or using digits that were not previously engaged in learning the task, subjects could adjust finger forces to compensate for this variability, thus leading to consistent task performance. The results from a follow-up experiment conducted in a virtual reality environment indicate that haptic feedback is sufficient to implement the above coordination between digit position and forces. However, it was also found that the generalizability of a learned manipulation is limited across tasks. Specifically, when subjects learned to manipulate the same object across different contexts that require different motor output, interference was found at the time of switching contexts. Data from additional studies provide evidence for parallel learning processes, which are characterized by different rates of decay and learning. These experiments have provided important insight into the neural mechanisms underlying learning and control of object manipulation. The present findings have potential biomedical applications including brain-machine interfaces, rehabilitation of hand function, and prosthetics.
Date Created
2013
Agent

Adaptive mixed reality rehabilitation for stroke

151399-Thumbnail Image.png
Description
Millions of Americans live with motor impairments resulting from a stroke and the best way to administer rehabilitative therapy to achieve recovery is not well understood. Adaptive mixed reality rehabilitation (AMRR) is a novel integration of motion capture technology and

Millions of Americans live with motor impairments resulting from a stroke and the best way to administer rehabilitative therapy to achieve recovery is not well understood. Adaptive mixed reality rehabilitation (AMRR) is a novel integration of motion capture technology and high-level media computing that provides precise kinematic measurements and engaging multimodal feedback for self-assessment during a therapeutic task. The AMRR system was evaluated in a small (N=3) cohort of stroke survivors to determine best practices for administering adaptive, media-based therapy. A proof of concept study followed, examining changes in clinical scale and kinematic performances among a group of stroke survivors who received either a month of AMRR therapy (N = 11) or matched dosing of traditional repetitive task therapy (N = 10). Both groups demonstrated statistically significant improvements in Wolf Motor Function Test and upper-extremity Fugl-Meyer Assessment scores, indicating increased function after the therapy. However, only participants who received AMRR therapy showed a consistent improvement in their kinematic measurements, including those measured in the trained reaching task (reaching to grasp a cone) and in an untrained reaching task (reaching to push a lighted button). These results suggest that that the AMRR system can be used as a therapy tool to enhance both functionality and reaching kinematics that quantify movement quality. Additionally, the AMRR concepts are currently being transitioned to a home-based training application. An inexpensive, easy-to-use, toolkit of tangible objects has been developed to sense, assess and provide feedback on hand function during different functional activities. These objects have been shown to accurately and consistently track hand function in people with unimpaired movements and will be tested with stroke survivors in the future.
Date Created
2012
Agent

The internal representation of arm position revealed through the spatial pattern of hand location estimation errors

151390-Thumbnail Image.png
Description
Our ability to estimate the position of our body parts in space, a fundamentally proprioceptive process, is crucial for interacting with the environment and movement control. For proprioception to support these actions, the Central Nervous System has to rely on

Our ability to estimate the position of our body parts in space, a fundamentally proprioceptive process, is crucial for interacting with the environment and movement control. For proprioception to support these actions, the Central Nervous System has to rely on a stored internal representation of the body parts in space. However, relatively little is known about this internal representation of arm position. To this end, I developed a method to map proprioceptive estimates of hand location across a 2-d workspace. In this task, I moved each subject's hand to a target location while the subject's eyes were closed. After returning the hand, subjects opened their eyes to verbally report the location of where their fingertip had been. Then, I reconstructed and analyzed the spatial structure of the pattern of estimation errors. In the first couple of experiments I probed the structure and stability of the pattern of errors by manipulating the hand used and tactile feedback provided when the hand was at each target location. I found that the resulting pattern of errors was systematically stable across conditions for each subject, subject-specific, and not uniform across the workspace. These findings suggest that the observed structure of pattern of errors has been constructed through experience, which has resulted in a systematically stable internal representation of arm location. Moreover, this representation is continuously being calibrated across the workspace. In the next two experiments, I aimed to probe the calibration of this structure. To this end, I used two different perturbation paradigms: 1) a virtual reality visuomotor adaptation to induce a local perturbation, 2) and a standard prism adaptation paradigm to induce a global perturbation. I found that the magnitude of the errors significantly increased to a similar extent after each perturbation. This small effect indicates that proprioception is recalibrated to a similar extent regardless of how the perturbation is introduced, suggesting that sensory and motor changes may be two independent processes arising from the perturbation. Moreover, I propose that the internal representation of arm location might be constructed with a global solution and not capable of local changes.
Date Created
2012
Agent

Influence of sensorimotor noise on the planning and control of reaching in 3-dimensional space

150499-Thumbnail Image.png
Description
The ability to plan, execute, and control goal oriented reaching and grasping movements is among the most essential functions of the brain. Yet, these movements are inherently variable; a result of the noise pervading the neural signals underlying sensorimotor processing.

The ability to plan, execute, and control goal oriented reaching and grasping movements is among the most essential functions of the brain. Yet, these movements are inherently variable; a result of the noise pervading the neural signals underlying sensorimotor processing. The specific influences and interactions of these noise processes remain unclear. Thus several studies have been performed to elucidate the role and influence of sensorimotor noise on movement variability. The first study focuses on sensory integration and movement planning across the reaching workspace. An experiment was designed to examine the relative contributions of vision and proprioception to movement planning by measuring the rotation of the initial movement direction induced by a perturbation of the visual feedback prior to movement onset. The results suggest that contribution of vision was relatively consistent across the evaluated workspace depths; however, the influence of vision differed between the vertical and later axes indicate that additional factors beyond vision and proprioception influence movement planning of 3-dimensional movements. If the first study investigated the role of noise in sensorimotor integration, the second and third studies investigate relative influence of sensorimotor noise on reaching performance. Specifically, they evaluate how the characteristics of neural processing that underlie movement planning and execution manifest in movement variability during natural reaching. Subjects performed reaching movements with and without visual feedback throughout the movement and the patterns of endpoint variability were compared across movement directions. The results of these studies suggest a primary role of visual feedback noise in shaping patterns of variability and in determining the relative influence of planning and execution related noise sources. The final work considers a computational approach to characterizing how sensorimotor processes interact to shape movement variability. A model of multi-modal feedback control was developed to simulate the interaction of planning and execution noise on reaching variability. The model predictions suggest that anisotropic properties of feedback noise significantly affect the relative influence of planning and execution noise on patterns of reaching variability.
Date Created
2012
Agent

Limb position estimation: neural mechanisms and consequences for movement production

150222-Thumbnail Image.png
Description
An accurate sense of upper limb position is crucial to reaching movements where sensory information about upper limb position and target location is combined to specify critical features of the movement plan. This dissertation was dedicated to studying the mechanisms

An accurate sense of upper limb position is crucial to reaching movements where sensory information about upper limb position and target location is combined to specify critical features of the movement plan. This dissertation was dedicated to studying the mechanisms of how the brain estimates the limb position in space and the consequences of misestimation of limb position on movements. Two independent but related studies were performed. The first involved characterizing the neural mechanisms of limb position estimation in the non-human primate brain. Single unit recordings were obtained in area 5 of the posterior parietal cortex in order to examine the role of this area in estimating limb position based on visual and somatic signals (proprioceptive, efference copy). When examined individually, many area 5 neurons were tuned to the position of the limb in the workspace but very few neurons were modulated by visual feedback. At the population level however decoding of limb position was somewhat more accurate when visual feedback was provided. These findings support a role for area 5 in limb position estimation but also suggest that visual signals regarding limb position are only weakly represented in this area, and only at the population level. The second part of this dissertation focused on the consequences of misestimation of limb position for movement production. It is well known that limb movements are inherently variable. This variability could be the result of noise arising at one or more stages of movement production. Here we used biomechanical modeling and simulation techniques to characterize movement variability resulting from noise in estimating limb position ('sensing noise') and in planning required movement vectors ('planning noise'), and compared that to the variability expected due to noise in movement execution. We found that the effects of sensing and planning related noise on movement variability were dependent upon both the planned movement direction and the initial configuration of the arm and were different in many respects from the effects of execution noise.
Date Created
2011
Agent