Dissolved organic matter (DOM) can have numerous effects on the water chemistry and the biological life within an aquatic system with its wide variety of chemical structures and properties. The composition of the dissolved carbon can be estimated by utilizing…
Dissolved organic matter (DOM) can have numerous effects on the water chemistry and the biological life within an aquatic system with its wide variety of chemical structures and properties. The composition of the dissolved carbon can be estimated by utilizing the fluorescent properties of some DOM such as aromatic amino acids and humic material. This experiment was used to observe how organic matter could influence hydrothermal systems, such as Sylvan Springs in Yellowstone National Park, USA. Using optical density at 600 nm (OD 600), excitation-emission matrix spectra (EEMS), and Illumina sequencing methods (16S rRNA gene sequencing), changes in dissolved organic matter (DOM) were observed based on long term incubation at 84ºC and microbial influence. Four media conditions were tested over a two-month duration to assess these changes: inoculated pine needle media, uninoculated pine needle media, inoculated yeast extract media, and uninoculated yeast extract media. The inoculated samples contained microbes from a fluid and sediment sample of Sylvan Spring collected July 23, 2018. Absorbance indicated that media containing pine needle broth poorly support life, whereas media containing yeast extract revealed a positive increase in growth. Excitation-Emission Matrix Spectra of the all media conditions indicated changes in DOM composition throughout the trial. There were limited differences between the inoculated and uninoculated samples suggesting that the DOM composition change in this study was dominated by the two-month incubation at 84ºC more than biotic processes. Sequencing performed on a sediment sample collected from Sylvan Spring indicated five main order of prokaryotic phyla: Aquificales, Desulfurococcales, Thermoproteales, Thermodesulfobacteriales, and Crenarchaeota. These organisms are not regarded as heterotrophic microbes, so the lack of significant biotic changes in DOM could be a result of these microorganisms not being able to utilize these enrichments as their main metabolic energy supply.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Dissolved organic matter (DOM) is an important part of aquatic foodwebs because it contains carbon, nitrogen, and other elements required by heterotrophic organisms. It has many sources that determine its molecular composition, nutrient content, and biological lability and in turn,…
Dissolved organic matter (DOM) is an important part of aquatic foodwebs because it contains carbon, nitrogen, and other elements required by heterotrophic organisms. It has many sources that determine its molecular composition, nutrient content, and biological lability and in turn, influence whether it is retained and processed in the stream reach or exported downstream. I examined the composition of DOM from vascular wetland plants, filamentous algae, and riparian tree leaf litter in Sonoran Desert streams and its decomposition by stream microbes. I used a combination of field observations, in-situ experiments, and a manipulative laboratory incubation to test (1) how dominant primary producers influence DOM chemical composition and ecosystem metabolism at the reach scale and (2) how DOM composition and nitrogen (N) content control microbial decomposition and stream uptake of DOM. I found that differences in streamwater DOM composition between two distinct reaches of Sycamore Creek did not affect in-situ stream respiration and gross primary production rates. Stream sediment microbial respiration rates did not differ significantly when incubated in the laboratory with DOM from wetland plants, algae, and leaf litter, thus all sources were similarly labile. However, whole-stream uptake of DOM increased from leaf to algal to wetland plant leachate. Desert streams have the potential to process DOM from leaf, wetland, and algal sources, though algal and wetland DOM, due to their more labile composition, can be more readily retained and mineralized.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
There is a growing body of evidence that the evolving redox structure of the oceans has been an important influence on the evolutionary trajectory of animals. However, current understanding of connections between marine redox conditions and marine extinctions and recoveries…
There is a growing body of evidence that the evolving redox structure of the oceans has been an important influence on the evolutionary trajectory of animals. However, current understanding of connections between marine redox conditions and marine extinctions and recoveries is hampered by limited detailed knowledge of the timing, duration, and extent of marine redox changes.
The recent development of U isotopes (δ238U) in carbonates as a global ocean redox proxy has provided new insight into this problem. Reliable application and interpretation of the δ238U paleoproxy in geological records requires a thorough understanding of the reliability of δ238U recorded by bulk carbonate sediments. In this dissertation, I evaluate the robustness of δ238U paleoproxy by examining δ238U variations in marine carbonates across Permian-Triassic boundary (PTB) sections from different paleogeographic locations. Close agreement of δ238U profiles from coeval carbonate sections thousands of kilometers apart, in different ocean basins, and with different diagenetic histories, strongly suggests that bulk carbonate sediments can reliably preserve primary marine δ238U signals, validating the carbonate U-isotope proxy for global-ocean redox analysis.
To improve understanding of the role of marine redox in shaping the evolutionary trajectory of animals, high-resolution δ238U records were generated across several key evolutionary periods, including the Ediacaran-to-Early Cambrian Explosion of complex life (635-541 Ma) and the delayed Early Triassic Earth system recovery from the PTB extinction (252-246 Ma). Based on U isotope variations in the Ediacaran-to-the Early Cambrian ocean, the initial diversification of the Ediacara biota immediately postdates an episode of pervasive ocean oxygenation across the Shuram event. The subsequent decline and extinction of the Ediacara biota is coincident with an episode of extensive anoxic conditions during the latest Ediacaran Period. These findings suggest that global marine redox changes drove the rise and fall of the Ediacara biota. Based on U isotope variations, the Early Triassic ocean was characterized by multiple episodes of extensive marine anoxia. By comparing the high-resolution δ238U record with the sub-stage ammonoid extinction rate curve, it appears that multiple oscillations in marine anoxia modulated the recovery of marine ecosystems following the latest Permian mass extinction.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Lipids perform functions essential to life and have a variety of structures that are influenced by the organisms and environments that produced them. Lipids tend to resist degradation after cell death, leading to their widespread use as biomarkers in geobiology,…
Lipids perform functions essential to life and have a variety of structures that are influenced by the organisms and environments that produced them. Lipids tend to resist degradation after cell death, leading to their widespread use as biomarkers in geobiology, though their interpretation is often tricky. Many lipid structures are shared among organisms and function in many geochemical conditions and extremes. I argue it is useful to interpret lipid distributions as a balance of functional necessity and energy cost. This work utilizes a quantitative thermodynamic framework for interpreting energetically driven adaptation in lipids.
Yellowstone National Park is a prime location to study biological adaptations to a wide range of temperatures and geochemical conditions. Lipids were extracted and quantified from thermophilic microbial communities sampled along the temperature (29-91°C) and chemical gradients of four alkaline Yellowstone hot springs. I observed that decreased alkyl chain carbon content, increased degree of unsaturation, and a shift from ether to ester linkage caused a downstream increase in the average oxidation state of carbon (ZC) I hypothesized these adaptations were selected because they represent cost-effective solutions to providing thermostable membranes.
This hypothesis was explored by assessing the relative energetic favorability of autotrophic reactions to form alkyl chains from known concentrations of dissolved inorganic species at elevated temperatures. I found that the oxidation-reduction potential (Eh) predicted to favor formation of sample-representative alkyl chains had a strong positive correlation with Eh calculated from hot spring water chemistry (R2 = 0.72 for the O2/H2O redox couple). A separate thermodynamic analysis of bacteriohopanepolyol lipids found that predicted equilibrium abundances of observed polar headgroup distributions were also highly correlated with Eh of the surrounding water (R2= 0.84). These results represent the first quantitative thermodynamic assessment of microbial lipid adaptation in natural systems and suggest that observed lipid distributions represent energetically cost-effective assemblages along temperature and chemical gradients.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Carboxylic acids are an abundant and reactive species present throughout our solar system. The reactions of carboxylic acids can shape the organic abundances within oil field brines, carbonaceous chondrites, and different ranks of coal.
I have performed hydrothermal experiments with…
Carboxylic acids are an abundant and reactive species present throughout our solar system. The reactions of carboxylic acids can shape the organic abundances within oil field brines, carbonaceous chondrites, and different ranks of coal.
I have performed hydrothermal experiments with model aromatic carboxylic acids in the presences of different oxide minerals to investigate the reactions available to carboxylic acids in the presence of mineral surfaces. By performing experiments containing one organic compound and one mineral surface, I can begin to unravel the different reactions that can occur in the presence of different minerals.
I performed experiments with phenylacetic acid (PAA), hydrocinnamic acid (HCA) and benzoic acid (BA) in the presence of spinel (MgAl2O4), magnetite (Fe3O4), hematite (Fe2O3), and corundum (Al2O3). The focus of this work was metal oxide minerals, with and without transition metal atoms, and with different crystal structures. I found that all four oxide minerals facilitated ketonic decarboxylation reactions of carboxylic acids to form ketone structures. The two minerals containing transition metals (magnetite and hematite) also opened a reaction path involving electrochemical oxidation of one carboxylic acid, PAA, to the shorter chain version of a second carboxylic acid, BA, in experiments starting with PAA. Fundamental studies like these can help to shape our knowledge of the breadth of organic reactions that are possible in geologic systems and the mechanisms of those reactions.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Exoplanetary research is a key component in the search for life outside of Earth and the Solar System. It provides people with a sense of wonder about their role in the evolution of the Universe and helps scientists understand life's…
Exoplanetary research is a key component in the search for life outside of Earth and the Solar System. It provides people with a sense of wonder about their role in the evolution of the Universe and helps scientists understand life's potential throughout a seemingly infinite number of unique exoplanetary environments. The purpose of this research project is to identify the most plausible biosignature gases that would indicate life's existence in the context of hyperarid exoplanetary atmospheres. This analysis first defines hyperarid environments based on known analogues for Earth and Mars and discusses the methods that researchers use to determine whether or not an exoplanet is hyperarid. It then identifies the most relevant biosignatures to focus on based on the scientific literature on analogous hyperarid environments and ranks them in order from greatest to least biological plausibility within extreme hyperarid conditions. The research found that methane (CH4) and nitrous oxide (N2O) are the most helpful biosignature gases for these particular exoplanetary scenarios based on reviews of the literature. The research also found that oxygen (O2), hydrogen sulfide (H2S) and ammonia (NH3) are the biosignatures with the least likely biological origin and the highest likelihood of false positive detection. This analysis also found that carbon dioxide (CO2) is a useful companion biosignature within these environments when paired with either CH4 or the pairing of hydrogen (H2) and carbon monoxide (CO). This information will provide a useful road map for dealing with the detection of biosignatures within hyperarid exoplanetary atmospheres during future astrobiology research missions.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Accidental wetlands have been created on the bed of the Salt River and are fed by storm-water outfalls discharging at various sections of the Phoenix Metropolitan Area. Water discharges from these outfalls throughout the year, during both dry conditions (base…
Accidental wetlands have been created on the bed of the Salt River and are fed by storm-water outfalls discharging at various sections of the Phoenix Metropolitan Area. Water discharges from these outfalls throughout the year, during both dry conditions (base flow) and during rain events (storm flow). In this study, DOC content and composition was studied during these two flow conditions, in the outfalls and along the wetland flow path. The importance of DOC lies in its role in transporting carbon via water movement, between different parts of a landscape, and therefore between pools in the ecosystem. Urbanization has influenced content and composition of DOC entering the accidental urban wetland via outfalls as they represent watersheds from different areas in Phoenix. First, DOC load exhibited higher quantities during stormflow compared to baseflow conditions. Second, DOC load and fluorescence analysis outcomes concluded the outfalls are different from each other. The inputs of water on the north side of the channel represent City of Phoenix watersheds were similar to each other and had high DOC load. The northern outfalls are both different in load and composition from the outfall pipe on the southern bank of the wetland as it represents South Mountain watershed. Fluorescence analysis results also concluded compositional changes occurred along the wetland flow path during both stormflow and baseflow conditions. In this study, it was explored how urbanization and the associated changes in hydrology and geomorphology have affected a desert wetland's carbon content.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Microvirga sp. BSC39 was isolated from a biological soil crust near Moab, Utah. The strain appears to be capable of chemotaxis and exopolysaccharide synthesis for biofilm adhesion. The BSC39 genome contains iron siderophore uptake and hydrolysis enzymes; however, it lacks…
Microvirga sp. BSC39 was isolated from a biological soil crust near Moab, Utah. The strain appears to be capable of chemotaxis and exopolysaccharide synthesis for biofilm adhesion. The BSC39 genome contains iron siderophore uptake and hydrolysis enzymes; however, it lacks siderophore synthesis pathways, suggesting the uptake of siderophores produced by neighboring microbes.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Bacillus sp. BSC154 was isolated from a biological soil crust near Moab, Utah. The strain appears to be capable of chemotaxis and biofilm production. The BSC154 genome contains iron siderophore production, nitrate reduction, mixed acid-butanediol fermentation, and assimilatory and dissimilatory sulfate metabolism pathways.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Many acidic hot springs in Yellowstone National Park support microbial iron oxidation, reduction, or microbial iron redox cycling (MIRC), as determined by microcosm rate experiments. Microbial dissimilatory iron reduction (DIR) was detected in numerous systems with a pH < 4.…
Many acidic hot springs in Yellowstone National Park support microbial iron oxidation, reduction, or microbial iron redox cycling (MIRC), as determined by microcosm rate experiments. Microbial dissimilatory iron reduction (DIR) was detected in numerous systems with a pH < 4. Rates of DIR are influenced by the availability of ferric minerals and organic carbon. Microbial iron oxidation (MIO) was detected from pH 2 – 5.5. In systems with abundant Fe (II), dissolved oxygen controls the presence of MIO. Rates generally increase with increased Fe(II) concentrations, but rate constants are not significantly altered by additions of Fe(II). MIRC was detected in systems with abundant ferric mineral deposition.
The rates of microbial and abiological iron oxidation were determined in a variety of cold (T= 9-12°C), circumneutral (pH = 5.5-9) environments in the Swiss Alps. Rates of MIO were measured in systems up to a pH of 7.4; only abiotic processes were detected at higher pH values. Iron oxidizing bacteria (FeOB) were responsible for 39-89% of the net oxidation rate at locations where biological iron oxidation was detected. Members of putative iron oxidizing genera, especially Gallionella, are abundant in systems where MIO was measured. Speciation calculations reveal that ferrous iron typically exists as FeCO30, FeHCO3+, FeSO40 or Fe2+ in these systems. The presence of ferrous (bi)carbonate species appear to increase abiotic iron oxidation rates relative to locations without significant concentrations. This approach, integrating geochemistry, rates, and community composition, reveals biogeochemical conditions that permit MIO, and locations where the abiotic rate is too fast for the biotic process to compete.
For a reaction to provide habitability for microbes in a given environment, it must energy yield and this energy must dissipate slowly enough to remain bioavailable. Thermodynamic boundaries exist at conditions where reactions do not yield energy, and can be quantified by calculations of chemical energy. Likewise, kinetic boundaries exist at conditions where the abiotic reaction rate is so fast that reactants are not bioavailable; this boundary can be quantified by measurements biological and abiological rates. The first habitability maps were drawn, using iron oxidation as an example, by quantifying these boundaries in geochemical space.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)