As the robotic industry becomes increasingly present in some of the more extreme environments such as the battle field, disaster sites or extraplanetary exploration, it will be necessary to provide locomotive niche strategies that are optimal to each terrain. …
As the robotic industry becomes increasingly present in some of the more extreme environments such as the battle field, disaster sites or extraplanetary exploration, it will be necessary to provide locomotive niche strategies that are optimal to each terrain. The hopping gait has been well studied in robotics and proven to be a potential method to fit some of these niche areas. There have been some difficulties in producing terrain following controllers that maintain robust, steady state, which are disturbance resistant.
The following thesis will discuss a controller which has shown the ability to produce these desired properties. A phase angle oscillator controller is shown to work remarkably well, both in simulation and with a one degree of freedom robotic test stand.
Work was also done with an experimental quadruped with less successful results, but which did show potential for stability. Additional work is suggested for the quadruped.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Sensorimotor control theories propose that the central nervous system exploits expected sensory consequences generated by motor commands for movement planning, as well as online sensory feedback for comparison with expected sensory feedback for monitoring and correcting, if needed, ongoing motor…
Sensorimotor control theories propose that the central nervous system exploits expected sensory consequences generated by motor commands for movement planning, as well as online sensory feedback for comparison with expected sensory feedback for monitoring and correcting, if needed, ongoing motor output. In our study, we tested this theoretical framework by quantifying the functional role of expected vs. actual proprioceptive feedback for planning and regulation of gait in humans. We addressed this question by using a novel methodological approach to deliver fast perturbations of the walking surface stiffness, in conjunction with a virtual reality system that provided visual feedback of upcoming changes of surface stiffness. In the “predictable” experimental condition, we asked subjects to learn associating visual feedback of changes in floor stiffness (sand patch) during locomotion to quantify kinematic and kinetic changes in gait prior to and during the gait cycle. In the “unpredictable” experimental condition, we perturbed floor stiffness at unpredictable instances during the gait to characterize the gait-phase dependent strategies in recovering the locomotor cycle. For the “unpredictable” conditions, visual feedback of changes in floor stiffness was absent or inconsistent with tactile and proprioceptive feedback. The investigation of these perturbation-induced effects on contralateral leg kinematics revealed that visual feedback of upcoming changes in floor stiffness allows for both early (preparatory) and late (post-perturbation) changes in leg kinematics. However, when proprioceptive feedback is not available, the early responses in leg kinematics do not occur while the late responses are preserved although in a, slightly attenuated form. The methods proposed in this study and the preliminary results of the kinematic response of the contralateral leg open new directions for the investigation of the relative role of visual, tactile, and proprioceptive feedback on gait control, with potential implications for designing novel robot-assisted gait rehabilitation approaches.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
One of the hottest topics in rehabilitation robotics is that of proper control of prosthetic devices. Despite decades of research, the state of the art is dramatically behind the expectations. To shed light on this issue, in June, 2013 the…
One of the hottest topics in rehabilitation robotics is that of proper control of prosthetic devices. Despite decades of research, the state of the art is dramatically behind the expectations. To shed light on this issue, in June, 2013 the first international workshop on Present and future of non-invasive peripheral nervous system (PNS)–Machine Interfaces (MI; PMI) was convened, hosted by the International Conference on Rehabilitation Robotics. The keyword PMI has been selected to denote human–machine interfaces targeted at the limb-deficient, mainly upper-limb amputees, dealing with signals gathered from the PNS in a non-invasive way, that is, from the surface of the residuum. The workshop was intended to provide an overview of the state of the art and future perspectives of such interfaces; this paper represents is a collection of opinions expressed by each and every researcher/group involved in it.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Wearable robots including exoskeletons, powered prosthetics, and powered orthotics must add energy to the person at an appropriate time to enhance, augment, or supplement human performance. Adding energy while not being in sync with the user can dramatically hurt performance…
Wearable robots including exoskeletons, powered prosthetics, and powered orthotics must add energy to the person at an appropriate time to enhance, augment, or supplement human performance. Adding energy while not being in sync with the user can dramatically hurt performance making it necessary to have correct timing with the user. Many human tasks such as walking, running, and hopping are repeating or cyclic tasks and a robot can add energy in sync with the repeating pattern for assistance. A method has been developed to add energy at the appropriate time to the repeating limit cycle based on a phase oscillator. The phase oscillator eliminates time from the forcing function which is based purely on the motion of the user. This approach has been simulated, implemented and tested in a robotic backpack which facilitates carrying heavy loads. The device oscillates the load of the backpack, based on the motion of the user, in order to add energy at the correct time and thus reduce the amount of energy required for walking with a heavy load. Models were developed in Working Model 2-D, a dynamics simulation software, in conjunction with MATLAB to verify theory and test control methods. The control system developed is robust and has successfully operated on a range of different users, each with their own different and distinct gait. The results of experimental testing validated the corresponding models.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
As robotic systems are used in increasingly diverse applications, the interaction of humans and robots has become an important area of research. In many of the applications of physical human robot interaction (pHRI), the robot and the human can be…
As robotic systems are used in increasingly diverse applications, the interaction of humans and robots has become an important area of research. In many of the applications of physical human robot interaction (pHRI), the robot and the human can be seen as cooperating to complete a task with some object of interest. Often these applications are in unstructured environments where many paths can accomplish the goal. This creates a need for the ability to communicate a preferred direction of motion between both participants in order to move in coordinated way. This communication method should be bidirectional to be able to fully utilize both the robot and human capabilities. Moreover, often in cooperative tasks between two humans, one human will operate as the leader of the task and the other as the follower. These roles may switch during the task as needed. The need for communication extends into this area of leader-follower switching. Furthermore, not only is there a need to communicate the desire to switch roles but also to control this switching process. Impedance control has been used as a way of dealing with some of the complexities of pHRI. For this investigation, it was examined if impedance control can be utilized as a way of communicating a preferred direction between humans and robots. The first set of experiments tested to see if a human could detect a preferred direction of a robot by grasping and moving an object coupled to the robot. The second set tested the reverse case if the robot could detect the preferred direction of the human. The ability to detect the preferred direction was shown to be up to 99% effective. Using these results, a control method to allow a human and robot to switch leader and follower roles during a cooperative task was implemented and tested. This method proved successful 84% of the time. This control method was refined using adaptive control resulting in lower interaction forces and a success rate of 95%.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective…
As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective of this thesis is to solve the inverse kinematics problem of redundant robot arms that results to anthropomorphic configurations. The swivel angle of the elbow was used as a human arm motion parameter for the robot arm to mimic. The swivel angle is defined as the rotation angle of the plane defined by the upper and lower arm around a virtual axis that connects the shoulder and wrist joints. Using kinematic data recorded from human subjects during every-day life tasks, the linear sensorimotor transformation model was validated and used to estimate the swivel angle, given the desired end-effector position. Defining the desired swivel angle simplifies the kinematic redundancy of the robot arm. The proposed method was tested with an anthropomorphic redundant robot arm and the computed motion profiles were compared to the ones of the human subjects. This thesis shows that the method computes anthropomorphic configurations for the robot arm, even if the robot arm has different link lengths than the human arm and starts its motion at random configurations.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Humans' ability to perform fine object and tool manipulation is a defining feature of their sensorimotor repertoire. How the central nervous system builds and maintains internal representations of such skilled hand-object interactions has attracted significant attention over the past three…
Humans' ability to perform fine object and tool manipulation is a defining feature of their sensorimotor repertoire. How the central nervous system builds and maintains internal representations of such skilled hand-object interactions has attracted significant attention over the past three decades. Nevertheless, two major gaps exist: a) how digit positions and forces are coordinated during natural manipulation tasks, and b) what mechanisms underlie the formation and retention of internal representations of dexterous manipulation. This dissertation addresses these two questions through five experiments that are based on novel grip devices and experimental protocols. It was found that high-level representation of manipulation tasks can be learned in an effector-independent fashion. Specifically, when challenged by trial-to-trial variability in finger positions or using digits that were not previously engaged in learning the task, subjects could adjust finger forces to compensate for this variability, thus leading to consistent task performance. The results from a follow-up experiment conducted in a virtual reality environment indicate that haptic feedback is sufficient to implement the above coordination between digit position and forces. However, it was also found that the generalizability of a learned manipulation is limited across tasks. Specifically, when subjects learned to manipulate the same object across different contexts that require different motor output, interference was found at the time of switching contexts. Data from additional studies provide evidence for parallel learning processes, which are characterized by different rates of decay and learning. These experiments have provided important insight into the neural mechanisms underlying learning and control of object manipulation. The present findings have potential biomedical applications including brain-machine interfaces, rehabilitation of hand function, and prosthetics.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Humans have an inherent capability of performing highly dexterous and skillful tasks with their arms, involving maintaining posture, movement and interacting with the environment. The latter requires for them to control the dynamic characteristics of the upper limb musculoskeletal system.…
Humans have an inherent capability of performing highly dexterous and skillful tasks with their arms, involving maintaining posture, movement and interacting with the environment. The latter requires for them to control the dynamic characteristics of the upper limb musculoskeletal system. Inertia, damping and stiffness, a measure of mechanical impedance, gives a strong representation of these characteristics. Many previous studies have shown that the arm posture is a dominant factor for determining the end point impedance in a horizontal plane (transverse plane). The objective of this thesis is to characterize end point impedance of the human arm in the three dimensional (3D) space. Moreover, it investigates and models the control of the arm impedance due to increasing levels of muscle co-contraction. The characterization is done through experimental trials where human subjects maintained arm posture, while perturbed by a robot arm. Moreover, the subjects were asked to control the level of their arm muscles' co-contraction, using visual feedback of their muscles' activation, in order to investigate the effect of the muscle co-contraction on the arm impedance. The results of this study showed a very interesting, anisotropic increase of the arm stiffness due to muscle co-contraction. This can lead to very useful conclusions about the arm biomechanics as well as many implications for human motor control and more specifically the control of arm impedance through muscle co-contraction. The study finds implications for the EMG-based control of robots that physically interact with humans.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Electromyogram (EMG)-based control interfaces are increasingly used in robot teleoperation, prosthetic devices control and also in controlling robotic exoskeletons. Over the last two decades researchers have come up with a plethora of decoding functions to map myoelectric signals to robot…
Electromyogram (EMG)-based control interfaces are increasingly used in robot teleoperation, prosthetic devices control and also in controlling robotic exoskeletons. Over the last two decades researchers have come up with a plethora of decoding functions to map myoelectric signals to robot motions. However, this requires a lot of training and validation data sets, while the parameters of the decoding function are specific for each subject. In this thesis we propose a new methodology that doesn't require training and is not user-specific. The main idea is to supplement the decoding functional error with the human ability to learn inverse model of an arbitrary mapping function. We have shown that the subjects gradually learned the control strategy and their learning rates improved. We also worked on identifying an optimized control scheme that would be even more effective and easy to learn for the subjects. Optimization was done by taking into account that muscles act in synergies while performing a motion task. The low-dimensional representation of the neural activity was used to control a two-dimensional task. Results showed that in the case of reduced dimensionality mapping, the subjects were able to learn to control the device in a slower pace, however they were able to reach and retain the same level of controllability. To summarize, we were able to build an EMG-based controller for robot devices that would work for any subject, without any training or decoding function, suggesting human-embedded controllers for robotic devices.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)