Exploring six-phase transmission lines for increasing power transfer with limited right of way

151247-Thumbnail Image.png
Description
In the United States, especially in metropolitan areas, transmission infra-structure is congested due to a combination of increasing load demands, declining investment, and aging facilities. It is anticipated that significant investments will be required for new construction and upgrades in

In the United States, especially in metropolitan areas, transmission infra-structure is congested due to a combination of increasing load demands, declining investment, and aging facilities. It is anticipated that significant investments will be required for new construction and upgrades in order to serve load demands. This thesis explores higher phase order systems, specifically, six-phase, as a means of increasing power transfer capability, and provides a comparison with conventional three-phase double circuit transmission lines. In this thesis, the line parameters, electric and magnetic fields, and right of way are the criteria for comparing six-phase and three-phase double circuit lines. The calculations of the criteria were achieved by a program developed using MATLAB. This thesis also presents fault analysis and recommends suitable pro-tection for six-phase transmission lines. This calculation was performed on 4-bus, 9-bus, and 118-bus systems from Powerworld® sample cases. The simulations were performed using Powerworld® and PSCAD®. Line parameters calculations performed in this thesis show that line imped-ances in six-phase lines have a slight difference, compared to three-phase double circuit line. The shunt capacitance of compacted six phase line is twice of the value in the three-phase double circuit line. As a consequence, the compacted six-phase line provides higher surge impedance loadings. The electric and magnetic fields calculations show that, ground level electric fields of the six-phase lines decline more rapidly as the distance from center of the lines increase. The six-phase lines have a better performance on ground level magnetic field. Based on the electric and magnetic field results, right of way re-quirements for the six-phase lines and three-phase double circuit line were calcu-lated. The calculation results of right of way show that six-phase lines provide higher power transfer capability with a given right of way. Results from transmission line fault analysis, and protection study show that, fault types and protection system in six-phase lines are more complicated, com-pared to three-phase double circuit line. To clarify the concern about six-phase line protection, a six-phase line protection system was designed. Appropriate pro-tection settings were determined for a six-phase line in the 4-bus system.
Date Created
2012
Agent

State Estimation for Enhanced Monitoring, Reliability, Restoration and Control of Smart Distribution Systems

151244-Thumbnail Image.png
Description
The Smart Grid initiative describes the collaborative effort to modernize the U.S. electric power infrastructure. Modernization efforts incorporate digital data and information technology to effectuate control, enhance reliability, encourage small customer sited distributed generation (DG), and better utilize assets. The

The Smart Grid initiative describes the collaborative effort to modernize the U.S. electric power infrastructure. Modernization efforts incorporate digital data and information technology to effectuate control, enhance reliability, encourage small customer sited distributed generation (DG), and better utilize assets. The Smart Grid environment is envisioned to include distributed generation, flexible and controllable loads, bidirectional communications using smart meters and other technologies. Sensory technology may be utilized as a tool that enhances operation including operation of the distribution system. Addressing this point, a distribution system state estimation algorithm is developed in this thesis. The state estimation algorithm developed here utilizes distribution system modeling techniques to calculate a vector of state variables for a given set of measurements. Measurements include active and reactive power flows, voltage and current magnitudes, phasor voltages with magnitude and angle information. The state estimator is envisioned as a tool embedded in distribution substation computers as part of distribution management systems (DMS); the estimator acts as a supervisory layer for a number of applications including automation (DA), energy management, control and switching. The distribution system state estimator is developed in full three-phase detail, and the effect of mutual coupling and single-phase laterals and loads on the solution is calculated. The network model comprises a full three-phase admittance matrix and a subset of equations that relates measurements to system states. Network equations and variables are represented in rectangular form. Thus a linear calculation procedure may be employed. When initialized to the vector of measured quantities and approximated non-metered load values, the calculation procedure is non-iterative. This dissertation presents background information used to develop the state estimation algorithm, considerations for distribution system modeling, and the formulation of the state estimator. Estimator performance for various power system test beds is investigated. Sample applications of the estimator to Smart Grid systems are presented. Applications include monitoring, enabling demand response (DR), voltage unbalance mitigation, and enhancing voltage control. Illustrations of these applications are shown. Also, examples of enhanced reliability and restoration using a sensory based automation infrastructure are shown.
Date Created
2012
Agent

Probabilistic power flow studies to examine the influence of photovoltaic generation on transmission system reliability

151242-Thumbnail Image.png
Description
Photovoltaic (PV) power generation has the potential to cause a significant impact on power system reliability since its total installed capacity is projected to increase at a significant rate. PV generation can be described as an intermittent and variable resource

Photovoltaic (PV) power generation has the potential to cause a significant impact on power system reliability since its total installed capacity is projected to increase at a significant rate. PV generation can be described as an intermittent and variable resource because its production is influenced by ever-changing environmental conditions. The study in this dissertation focuses on the influence of PV generation on trans-mission system reliability. This is a concern because PV generation output is integrated into present power systems at various voltage levels and may significantly affect the power flow patterns. This dissertation applies a probabilistic power flow (PPF) algorithm to evaluate the influence of PV generation uncertainty on transmission system perfor-mance. A cumulant-based PPF algorithm suitable for large systems is used. Correlation among adjacent PV resources is considered. Three types of approximation expansions based on cumulants namely Gram-Charlier expansion, Edgeworth expansion and Cor-nish-Fisher expansion are compared, and their properties, advantages and deficiencies are discussed. Additionally, a novel probabilistic model of PV generation is developed to obtain the probability density function (PDF) of the PV generation production based on environmental conditions. Besides, this dissertation proposes a novel PPF algorithm considering the conven-tional generation dispatching operation to balance PV generation uncertainties. It is pru-dent to include generation dispatch in the PPF algorithm since the dispatching strategy compensates for PV generation injections and influences the uncertainty results. Fur-thermore, this dissertation also proposes a probabilistic optimal power dispatching strat-egy which considers uncertainty problems in the economic dispatch and optimizes the expected value of the total cost with the overload probability as a constraint. The proposed PPF algorithm with the three expansions is compared with Monte Carlo simulations (MCS) with results for a 2497-bus representation of the Arizona area of the Western Electricity Coordinating Council (WECC) system. The PDFs of the bus voltages, line flows and slack bus production are computed, and are used to identify the confidence interval, the over limit probability and the expected over limit time of the ob-jective variables. The proposed algorithm is of significant relevance to the operating and planning studies of the transmission systems with PV generation installed.
Date Created
2012
Agent

Power system network reduction for engineering and economic analysis

151224-Thumbnail Image.png
Description
Electric power systems are facing great challenges from environmental regulations, changes in demand due to new technologies like electric vehicle, as well as the integration of various renewable energy sources. These factors taken together require the development of new tools

Electric power systems are facing great challenges from environmental regulations, changes in demand due to new technologies like electric vehicle, as well as the integration of various renewable energy sources. These factors taken together require the development of new tools to help make policy and investment decisions for the future power grid. The requirements of a network equivalent to be used in such planning tools are very different from those assumed in the development of traditional equivalencing procedures. This dissertation is focused on the development, implementation and verification of two network equivalencing approaches on large power systems, such as the Eastern Interconnection. Traditional Ward-type equivalences are a class of equivalencing approaches but this class has some significant drawbacks. It is well known that Ward-type equivalents "smear" the injections of external generators over a large number of boundary buses. For newer long-term investment applications that take into account such things as greenhouse gas (GHG) regulations and generator availability, it is computationally impractical to model fractions of generators located at many buses. A modified-Ward equivalent is proposed to address this limitation such that the external generators are moved wholesale to some internal buses based on electrical distance. This proposed equivalencing procedure is designed so that the retained-line power flows in the equivalent match those in the unreduced (full) model exactly. During the reduction process, accommodations for special system elements are addressed, including static VAr compensators (SVCs), high voltage dc (HVDC) transmission lines, and phase angle regulators. Another network equivalencing approach based on the dc power flow assumptions and the power transfer distribution factors (PTDFs) is proposed. This method, rather than eliminate buses via Gauss-reduction, aggregates buses on a zonal basis. The bus aggregation approach proposed here is superior to the existing bus aggregation methods in that a) under the base case, the equivalent-system inter-zonal power flows exactly match those calculated using the full-network-model b) as the operating conditions change, errors in line flows are reduced using the proposed bus clustering algorithm c) this method is computationally more efficient than other bus aggregation methods proposed heretofore. A critical step in achieving accuracy with a bus aggregation approach is selecting which buses to cluster together and how many clusters are needed. Clustering in this context refers to the process of partitioning a network into subsets of buses. An efficient network clustering method is proposed based on the PTDFs and the data mining techniques. This method is applied to the EI topology using the "Saguaro" supercomputer at ASU, a resource with sufficient memory and computational capability for handling this 60,000-bus and 80,000-branch system. The network equivalents generated by the proposed approaches are verified and tested for different operating conditions and promising results have been observed.
Date Created
2012
Agent

Analysis of synchronization and accuracy of synchrophasor measurements

151214-Thumbnail Image.png
Description
In electric power systems, phasor measurement units (PMUs) are capable of providing synchronized voltage and current phasor measurements which are superior to conventional measurements collected by the supervisory control and data acquisition (SCADA) system in terms of resolution and accuracy.

In electric power systems, phasor measurement units (PMUs) are capable of providing synchronized voltage and current phasor measurements which are superior to conventional measurements collected by the supervisory control and data acquisition (SCADA) system in terms of resolution and accuracy. These measurements are known as synchrophasor measurements. Considerable research work has been done on the applications of PMU measurements based on the as-sumption that a high level of accuracy is obtained in the field. The study in this dissertation is conducted to address the basic issue concerning the accuracy of actual PMU measurements in the field. Synchronization is one of the important features of PMU measurements. However, the study presented in this dissertation reveals that the problem of faulty synchronization between measurements with the same time stamps from different PMUs exists. A Kalman filter model is proposed to analyze and calcu-late the time skew error caused by faulty synchronization. In order to achieve a high level of accuracy of PMU measurements, inno-vative methods are proposed to detect and identify system state changes or bad data which are reflected by changes in the measurements. This procedure is ap-plied as a key step in adaptive Kalman filtering of PMU measurements to over-come the insensitivity of a conventional Kalman filter. Calibration of PMU measurements is implemented in specific PMU instal-lation scenarios using transmission line (TL) parameters from operation planning data. The voltage and current correction factors calculated from the calibration procedure indicate the possible errors in PMU measurements. Correction factors can be applied in on-line calibration of PMU measurements. A study is conducted to address an important issue when integrating PMU measurements into state estimation. The reporting rate of PMU measurements is much higher than that of the measurements collected by the SCADA. The ques-tion of how to buffer PMU measurements is raised. The impact of PMU meas-urement buffer length on state estimation is discussed. A method based on hy-pothesis testing is proposed to determine the optimal buffer length of PMU meas-urements considering the two conflicting features of PMU measurements, i. e. un-certainty and variability. Results are presented for actual PMU synchrophasor measurements.
Date Created
2012
Agent

Optimum corona ring design for high voltage compact transmission lines using Gaussian process model

151080-Thumbnail Image.png
Description
Electric utilities are exploring new technologies to cope up with the in-crease in electricity demand and power transfer capabilities of transmission lines. Compact transmission lines and high phase order systems are few of the techniques which enhance the power transfer

Electric utilities are exploring new technologies to cope up with the in-crease in electricity demand and power transfer capabilities of transmission lines. Compact transmission lines and high phase order systems are few of the techniques which enhance the power transfer capability of transmission lines without requiring any additional right-of-way. This research work investigates the impact of compacting high voltage transmission lines and high phase order systems on the surface electric field of composite insulators, a key factor deciding service performance of insulators. The electric field analysis was done using COULOMB 9.0, a 3D software package which uses a numerical analysis technique based on Boundary Element Method (BEM). 3D models of various types of standard transmission towers used for 230 kV, 345 kV and 500 kV level were modeled with different insulators con-figurations and number of circuits. Standard tower configuration models were compacted by reducing the clearance from live parts in steps of 10%. It was found that the standard tower configuration can be compacted to 30% without violating the minimum safety clearance mandated by NESC standards. The study shows that surface electric field on insulators for few of the compact structures exceeded the maximum allowable limit even if corona rings were installed. As a part of this study, a Gaussian process model based optimization pro-gram was developed to find the optimum corona ring dimensions to limit the electric field within stipulated values. The optimization program provides the dimen-sions of corona ring, its placement from the high voltage end for a given dry arc length of insulator and system voltage. JMP, a statistical computer package and AMPL, a computer language widely used form optimization was used for optimi-zation program. The results obtained from optimization program validated the industrial standards.
Date Created
2012
Agent

Effect of reduced system inertia due to increased renewable resource penetration on power system stability

151066-Thumbnail Image.png
Description
This thesis concerns with the impact of renewable generation resources on the power system stability. The rapidly increasing integration of renewable energy sources into the grid can change the way power systems operate and respond to system disturbances. This is

This thesis concerns with the impact of renewable generation resources on the power system stability. The rapidly increasing integration of renewable energy sources into the grid can change the way power systems operate and respond to system disturbances. This is because the available inertia from synchronous machines, which helps in damping system oscillations, gets reduced as an increase in renewables like wind and solar photovoltaics is accompanied by a decrease in conventional generators. This aspect of high penetration of renewables has the potential to affect the rotor angle stability and small signal stability of power systems. The system with increased renewables is mathematically modeled to rep-resent wind and solar resources. Transient and small signal stability studies are performed for various operating cases. The main conclusion drawn from the different studies is that increased renewable penetration causes a few instability problems, most of which are either localized and do not adversely affect the over-all system stability. It is also found that the critical inter-area modes of oscillations are sufficiently damped.
Date Created
2012
Agent

Sensitivity-based Pricing and Multiobjective Control for Energy Management in Power Distribution Systems

151050-Thumbnail Image.png
Description
In the deregulated power system, locational marginal prices are used in transmission engineering predominantly as near real-time pricing signals. This work extends this concept to distribution engineering so that a distribution class locational marginal price might be used for real-time

In the deregulated power system, locational marginal prices are used in transmission engineering predominantly as near real-time pricing signals. This work extends this concept to distribution engineering so that a distribution class locational marginal price might be used for real-time pricing and control of advanced control systems in distribution circuits. A formulation for the distribution locational marginal price signal is presented that is based on power flow sensitivities in a distribution system. A Jacobian-based sensitivity analysis has been developed for application in the distribution pricing method. Increasing deployment of distributed energy sources is being seen at the distribution level and this trend is expected to continue. To facilitate an optimal use of the distributed infrastructure, the control of the energy demand on a feeder node in the distribution system has been formulated as a multiobjective optimization problem and a solution algorithm has been developed. In multiobjective problems the Pareto optimality criterion is generally applied, and commonly used solution algorithms are decision-based and heuristic. In contrast, a mathematically-robust technique called normal boundary intersection has been modeled for use in this work, and the control variable is solved via separable programming. The Roy Billinton Test System (RBTS) has predominantly been used to demonstrate the application of the formulation in distribution system control. A parallel processing environment has been used to replicate the distributed nature of controls at many points in the distribution system. Interactions between the real-time prices in a distribution feeder and the nodal prices at the aggregated load bus have been investigated. The application of the formulations in an islanded operating condition has also been demonstrated. The DLMP formulation has been validated using the test bed systems and a practical framework for its application in distribution engineering has been presented. The multiobjective optimization yields excellent results and is found to be robust for finer time resolutions. The work shown in this report is applicable to, and has been researched under the aegis of the Future Renewable Electric Energy Delivery and Management (FREEDM) center, which is a generation III National Science Foundation engineering research center headquartered at North Carolina State University.
Date Created
2012
Agent

Evaluation of epoxy nanocomposites for high voltage insulation

151012-Thumbnail Image.png
Description
Polymeric materials containing nanometer (nm) size particles are being introduced to provide compact shapes for low and medium voltage insulation equipment. The nanocomposites may provide superior electrical performance when compared with those available currently, such as lower dielectric losses and

Polymeric materials containing nanometer (nm) size particles are being introduced to provide compact shapes for low and medium voltage insulation equipment. The nanocomposites may provide superior electrical performance when compared with those available currently, such as lower dielectric losses and increased dielectric strength, tracking and erosion resistance, and surface hydrophobicity. All of the above mentioned benefits can be achieved at a lower filler concentration (< 10%) than conventional microfillers (40-60%). Also, the uniform shapes of nanofillers provide a better electrical stress distribution as compared to irregular shaped microcomposites which can have high internal electric stress, which could be a problem for devices with active electrical parts. Improvement in electrical performance due to addition of nanofillers in an epoxy matrix has been evaluated in this work. Scanning Electron Microscopy (SEM) was done on the epoxy samples to confirm uniform dispersion of nano-sized fillers as good filler dispersion is essential to realize the above stated benefits. Dielectric spectroscopy experiments were conducted over a wide range of frequencies as a function of temperature to understand the role of space charge and interfaces in these materials. The experiment results demonstrate significant reduction in dielectric losses in samples containing nanofillers. High voltage experiments such as corona resistance tests were conducted over 500 hours to monitor degradation in the samples due to corona. These tests revealed improvements in partial discharge endurance of nanocomposite samples. These improvements could not be adequately explained using a macroscopic quantity such as thermal conductivity. Thermo gravimetric analysis (TGA) showed higher weight loss initiation temperatures for nanofilled samples which is in agreement with the corona resistance experimental results. Theoretical models have also been developed in this work to complement the results of the corona resistance experiment and the TGA analysis. Degradation model was developed to map the erosion path using Dijkstra's shortest path algorithm. A thermal model was developed to calculate the localized temperature distribution in the micro and nano-filled samples using the PDE toolbox in MATLAB. Both the models highlight the fact that improvement in nanocomposites is not limited to the filler concentrations that were tested experimentally.
Date Created
2012
Agent

Short-term voltage stability analysis for power system with single-phase motor load

150856-Thumbnail Image.png
Description
Voltage stability is always a major concern in power system operation. Recently Fault Induced Delayed Voltage Recovery (FIDVR) has gained increased attention. It is widely believed that the motor-driven loads of high efficiency, low inertia air conditioners are one of

Voltage stability is always a major concern in power system operation. Recently Fault Induced Delayed Voltage Recovery (FIDVR) has gained increased attention. It is widely believed that the motor-driven loads of high efficiency, low inertia air conditioners are one of the main causes of FIDVR events. Simulation tools that assist power system operation and planning have been found insufficient to reproduce FIDVR events. This is because of their inaccurate load modeling of single-phase motor loads. Conventionally three-phase motor models have been used to represent the aggregation effect of single-phase motor load. However researchers have found that this modeling method is far from an accurate representation of single-phase induction motors. In this work a simulation method is proposed to study the precise influence of single-phase motor load in context of FIDVR. The load, as seen the transmission bus, is replaced with a detailed distribution system. Each single-phase motor in the distribution system is represented by an equipment-level model for best accuracy. This is to enable the simulation to capture stalling effects of air conditioner compressor motors as they are related to FIDVR events. The single phase motor models are compared against the traditional three phase aggregate approximation. Also different percentages of single-phase motor load are compared and analyzed. Simulation result shows that proposed method is able to reproduce FIDVR events. This method also provides a reasonable estimation of the power system voltage stability under the contingencies.
Date Created
2012
Agent