Risk-Based Dynamic Security Assessment of the Electricity Grid with High Penetration of Renewable Generation

155729-Thumbnail Image.png
Description
Electric power system security assessment is one of the most important requirements for operational and resource planning of the bulk power system ensuring safe operation of the power system for all credible contingencies. This deterministic approach usually provides a conservative

Electric power system security assessment is one of the most important requirements for operational and resource planning of the bulk power system ensuring safe operation of the power system for all credible contingencies. This deterministic approach usually provides a conservative criterion and can result in expensive bulk system expansion plans or conservative operating limits. Furthermore, with increased penetration of converter-based renewable generation in the electric grid, the dynamics of the grid are changing. In addition, the variability and intermittency associated with the renewable energy sources introduce uncertainty in the electricity grid. Since security margins have direct economic impact on the utilities; more clarity is required regarding the basis on which security decisions are made. The main objective of this work is to provide an approach for risk-based security assessment (RBSA) to define dynamic reliability standards in future electricity grids. RBSA provides a measure of the security of the power system that combines both the likelihood and the consequence of an event.

A novel approach to estimate the impact of transient stability is presented by modeling several important protection systems within the transient stability analysis. A robust operational metric to quantify the impact of transient instability event is proposed that incorporates the effort required to stabilize any transiently unstable event. The effect of converter-interfaced renewable energy injection on system reliability is investigated us-ing RBSA. A robust RBSA diagnostics tool is developed which provides an interactive user interface where the RBSA results and contingency ranking reports can be explored and compared based on specific user inputs without executing time domain simulations or risk calculations, hence providing a fast and robust approach for handling large time domain simulation and risk assessment data. The results show that RBSA can be used effectively in system planning to select security limits. Comparison of RBSA with deterministic methods show that RBSA not only provides less conservative results, it also illustrates the bases on which such security decisions are made. RBSA helps in identifying critical aspects of system reliability that is not possible using the deterministic reliability techniques.
Date Created
2017
Agent

Break-Even Points of Battery Energy Storage Systems for Peak Shaving Applications

128314-Thumbnail Image.png
Description

In the last few years, several investigations have been carried out in the field of optimal sizing of energy storage systems (ESSs) at both the transmission and distribution levels. Nevertheless, most of these works make important assumptions about key factors

In the last few years, several investigations have been carried out in the field of optimal sizing of energy storage systems (ESSs) at both the transmission and distribution levels. Nevertheless, most of these works make important assumptions about key factors affecting ESS profitability such as efficiency and life cycles and especially about the specific costs of the ESS, without considering the uncertainty involved. In this context, this work aims to answer the question: what should be the costs of different ESS technologies in order to make a profit when considering peak shaving applications? The paper presents a comprehensive sensitivity analysis of the interaction between the profitability of an ESS project and some key parameters influencing the project performance. The proposed approach determines the break-even points for different ESSs considering a wide range of life cycles, efficiencies, energy prices, and power prices. To do this, an optimization algorithm for the sizing of ESSs is proposed from a distribution company perspective. From the results, it is possible to conclude that, depending on the values of round trip efficiency, life cycles, and power price, there are four battery energy storage systems (BESS) technologies that are already profitable when only peak shaving applications are considered: lead acid, NaS, ZnBr, and vanadium redox.

Date Created
2016-06-22
Agent

Analytical approaches for identification and representation of critical protection systems in transient stability studies

155471-Thumbnail Image.png
Description
After a major disturbance, the power system response is highly dependent on protection schemes and system dynamics. Improving power systems situational awareness requires proper and simultaneous modeling of both protection schemes and dynamic characteristics in power systems analysis tools. Historical

After a major disturbance, the power system response is highly dependent on protection schemes and system dynamics. Improving power systems situational awareness requires proper and simultaneous modeling of both protection schemes and dynamic characteristics in power systems analysis tools. Historical information and ex-post analysis of blackouts reaffirm the critical role of protective devices in cascading events, thereby confirming the necessity to represent protective functions in transient stability studies. This dissertation is aimed at studying the importance of representing protective relays in power system dynamic studies. Although modeling all of the protective relays within transient stability studies may result in a better estimation of system behavior, representing, updating, and maintaining the protection system data becomes an insurmountable task. Inappropriate or outdated representation of the relays may result in incorrect assessment of the system behavior. This dissertation presents a systematic method to determine essential relays to be modeled in transient stability studies. The desired approach should identify protective relays that are critical for various operating conditions and contingencies. The results of the transient stability studies confirm that modeling only the identified critical protective relays is sufficient to capture system behavior for various operating conditions and precludes the need to model all of the protective relays. Moreover, this dissertation proposes a method that can be implemented to determine the appropriate location of out-of-step blocking relays. During unstable power swings, a generator or group of generators may accelerate or decelerate leading to voltage depression at the electrical center along with generator tripping. This voltage depression may cause protective relay mis-operation and unintentional separation of the system. In order to avoid unintentional islanding, the potentially mis-operating relays should be blocked from tripping with the use of out-of-step blocking schemes. Blocking these mis-operating relays, combined with an appropriate islanding scheme, help avoid a system wide collapse. The proposed method is tested on data from the Western Electricity Coordinating Council. A triple line outage of the California-Oregon Intertie is studied. The results show that the proposed method is able to successfully identify proper locations of out-of-step blocking scheme.
Date Created
2017
Agent

Voltage Instability Analysis Using P-V or Q-V Analysis

155364-Thumbnail Image.png
Description
In the recent past, due to regulatory hurdles and the inability to expand transmission systems, the bulk power system is increasingly being operated close to its limits. Among the various phenomenon encountered, static voltage stability has received increased attention among

In the recent past, due to regulatory hurdles and the inability to expand transmission systems, the bulk power system is increasingly being operated close to its limits. Among the various phenomenon encountered, static voltage stability has received increased attention among electric utilities. One approach to investigate static voltage stability is to run a set of power flow simulations and derive the voltage stability limit based on the analysis of power flow results. Power flow problems are formulated as a set of nonlinear algebraic equations usually solved by iterative methods. The most commonly used method is the Newton-Raphson method. However, at the static voltage stability limit, the Jacobian becomes singular. Hence, the power flow solution may fail to converge close to the true limit.

To carefully examine the limitations of conventional power flow software packages in determining voltage stability limits, two lines of research are pursued in this study. The first line of the research is to investigate the capability of different power flow solution techniques, such as conventional power flow and non-iterative power flow techniques to obtain the voltage collapse point. The software packages used in this study include Newton-based methods contained in PSSE, PSLF, PSAT, PowerWorld, VSAT and a non-iterative technique known as the holomorphic embedding method (HEM).

The second line is to investigate the impact of the available control options and solution parameter settings that can be utilized to obtain solutions closer to the voltage collapse point. Such as the starting point, generator reactive power limits, shunt device control modes, area interchange control, and other such parameters.
Date Created
2017
Agent

Improving network reductions for power system analysis

155233-Thumbnail Image.png
Description
The power system is the largest man-made physical network in the world. Performing analysis of a large bulk system is computationally complex, especially when the study involves engineering, economic and environmental considerations. For instance, running a unit-commitment (UC) over a

The power system is the largest man-made physical network in the world. Performing analysis of a large bulk system is computationally complex, especially when the study involves engineering, economic and environmental considerations. For instance, running a unit-commitment (UC) over a large system involves a huge number of constraints and integer variables. One way to reduce the computational expense is to perform the analysis on a small equivalent (reduced) model instead on the original (full) model.

The research reported here focuses on improving the network reduction methods so that the calculated results obtained from the reduced model better approximate the performance of the original model. An optimization-based Ward reduction (OP-Ward) and two new generator placement methods in network reduction are introduced and numerical test results on large systems provide proof of concept.

In addition to dc-type reductions (ignoring reactive power, resistance elements in the network, etc.), the new methods applicable to ac domain are introduced. For conventional reduction methods (Ward-type methods, REI-type methods), eliminating external generator buses (PV buses) is a tough problem, because it is difficult to accurately approximate the external reactive support in the reduced model. Recently, the holomorphic embedding (HE) based load-flow method (HELM) was proposed, which theoretically guarantees convergence given that the power flow equations are structure in accordance with Stahl’s theory requirements. In this work, a holomorphic embedding based network reduction (HE reduction) method is proposed which takes advantage of the HELM technique. Test results shows that the HE reduction method can approximate the original system performance very accurately even when the operating condition changes.
Date Created
2017
Agent

Impact of converter interfaced generation and load on grid performance

155232-Thumbnail Image.png
Description
Alternate sources of energy such as wind, solar photovoltaic and fuel cells are coupled to the power grid with the help of solid state converters. Continued deregulation of the power sector coupled with favorable government incentives has resulted in the

Alternate sources of energy such as wind, solar photovoltaic and fuel cells are coupled to the power grid with the help of solid state converters. Continued deregulation of the power sector coupled with favorable government incentives has resulted in the rapid growth of renewable energy sources connected to the distribution system at a voltage level of 34.5kV or below. Of late, many utilities are also investing in these alternate sources of energy with the point of interconnection with the power grid being at the transmission level. These converter interfaced generation along with their associated control have the ability to provide the advantage of fast control of frequency, voltage, active, and reactive power. However, their ability to provide stability in a large system is yet to be investigated in detail. This is the primary objective of this research.

In the future, along with an increase in the percentage of converter interfaced renewable energy sources connected to the transmission network, there exists a possibility of even connecting synchronous machines to the grid through converters. Thus, all sources of energy can be expected to be coupled to the grid through converters. The control and operation of such a grid will be unlike anything that has been encountered till now. In this dissertation, the operation and behavior of such a grid will be investigated. The first step in such an analysis will be to build an accurate and simple mathematical model to represent the corresponding components in commercial software. Once this bridge has been crossed, conventional machines will be replaced with their solid state interfaced counterparts in a phased manner. At each stage, attention will be devoted to the control of these sources and also on the stability performance of the large power system.

This dissertation addresses various concerns regarding the control and operation of a futuristic power grid. In addition, this dissertation also aims to address the issue of whether a requirement may arise to redefine operational reliability criteria based on the results obtained.
Date Created
2017
Agent

Load sensitivity studies and contingency analysis in power systems

155042-Thumbnail Image.png
Description
The past decades have seen a significant shift in the expectations and requirements re-lated to power system analysis tools. Investigations into major power grid disturbances have suggested the need for more comprehensive assessment methods. Accordingly, sig-nificant research in recent years

The past decades have seen a significant shift in the expectations and requirements re-lated to power system analysis tools. Investigations into major power grid disturbances have suggested the need for more comprehensive assessment methods. Accordingly, sig-nificant research in recent years has focused on the development of better power system models and efficient techniques for analyzing power system operability. The work done in this report focusses on two such topics

1. Analysis of load model parameter uncertainty and sensitivity based pa-rameter estimation for power system studies

2. A systematic approach to n-1-1 analysis for power system security as-sessment

To assess the effect of load model parameter uncertainty, a trajectory sensitivity based approach is proposed in this work. Trajectory sensitivity analysis provides a sys-tematic approach to study the impact of parameter uncertainty on power system re-sponse to disturbances. Furthermore, the non-smooth nature of the composite load model presents some additional challenges to sensitivity analysis in a realistic power system. Accordingly, the impact of the non-smooth nature of load models on the sensitivity analysis is addressed in this work. The study was performed using the Western Electrici-ty Coordinating Council (WECC) system model. To address the issue of load model pa-rameter estimation, a sensitivity based load model parameter estimation technique is presented in this work. A detailed discussion on utilizing sensitivities to improve the ac-curacy and efficiency of the parameter estimation process is also presented in this work.

Cascading outages can have a catastrophic impact on power systems. As such, the NERC transmission planning (TPL) standards requires utilities to plan for n¬-1-1 out-ages. However, such analyses can be computationally burdensome for any realistic pow-er system owing to the staggering number of possible n-1-1 contingencies. To address this problem, the report proposes a systematic approach to analyze n-1-1 contingencies in a computationally tractable manner for power system security assessment. The pro-posed approach addresses both static and dynamic security assessment. The proposed methods have been tested on the WECC system.
Date Created
2016
Agent

A probabilistic cost to benefit assessment of a next generation electric power distribution system

155012-Thumbnail Image.png
Description
This thesis provides a cost to benefit assessment of the proposed next generation distribution system, the Future Renewable Electric Energy Distribution Management (FREEDM) system. In this thesis, a probabilistic study is conducted to determine the payback period for an investment

This thesis provides a cost to benefit assessment of the proposed next generation distribution system, the Future Renewable Electric Energy Distribution Management (FREEDM) system. In this thesis, a probabilistic study is conducted to determine the payback period for an investment made in the FREEDM distribution system. The stochastic study will help in performing a detailed analysis in estimating the probability density function and statistics associated with the payback period.

This thesis also identifies several parameters associated with the FREEDM system, which are used in the cost benefit study to evaluate the investment and several direct and indirect benefits. Different topologies are selected to represent the FREEDM test bed. Considering the cost of high speed fault isolation devices, the topology design is selected based on the minimum number of fault isolation devices constrained by enhanced reliability. A case study is also performed to assess the economic impact of energy storage devices in the solid state transformers so that the fault isolation devices may be replaced by conventional circuit breakers.

A reliability study is conducted on the FREEDM distribution system to examine the customer centric reliability index, System Average Interruption Frequency Index (SAIFI). It is observed that the SAIFI was close to 0.125 for the FREEDM distribution system. In addition, a comparison study is performed based on the SAIFI for a representative U.S. distribution system and the FREEDM distribution system.

The payback period is also determined by adopting a theoretical approach and the results are compared with the Monte Carlo simulation outcomes to understand the variation in the payback period. It is observed that the payback period is close to 60 years but if an annual rebate is considered, the payback period reduces to 20 years. This shows that the FREEDM system has a significant potential which cannot be overlooked. Several direct and indirect benefits arising from the FREEDM system have also been discussed in this thesis.
Date Created
2016
Agent

Improved convex optimal decision-making processes in distribution systems: enable grid integration of photovoltaic resources and distributed energy storage

154979-Thumbnail Image.png
Description
This research mainly focuses on improving the utilization of photovoltaic (PV) re-sources in distribution systems by reducing their variability and uncertainty through the integration of distributed energy storage (DES) devices, like batteries, and smart PV in-verters. The adopted theoretical tools

This research mainly focuses on improving the utilization of photovoltaic (PV) re-sources in distribution systems by reducing their variability and uncertainty through the integration of distributed energy storage (DES) devices, like batteries, and smart PV in-verters. The adopted theoretical tools include statistical analysis and convex optimization. Operational issues have been widely reported in distribution systems as the penetration of PV resources has increased. Decision-making processes for determining the optimal allo-cation and scheduling of DES, and the optimal placement of smart PV inverters are con-sidered. The alternating current (AC) power flow constraints are used in these optimiza-tion models. The first two optimization problems are formulated as quadratically-constrained quadratic programming (QCQP) problems while the third problem is formu-lated as a mixed-integer QCQP (MIQCQP) problem. In order to obtain a globally opti-mum solution to these non-convex optimization problems, convex relaxation techniques are introduced. Considering that the costs of the DES are still very high, a procedure for DES sizing based on OpenDSS is proposed in this research to avoid over-sizing.

Some existing convex relaxations, e.g. the second order cone programming (SOCP) relaxation and semidefinite programming (SDP) relaxation, which have been well studied for the optimal power flow (OPF) problem work unsatisfactorily for the DES and smart inverter optimization problems. Several convex constraints that can approximate the rank-1 constraint X = xxT are introduced to construct a tighter SDP relaxation which is referred to as the enhanced SDP (ESDP) relaxation using a non-iterative computing framework. Obtaining the convex hull of the AC power flow equations is beneficial for mitigating the non-convexity of the decision-making processes in power systems, since the AC power flow constraints exist in many of these problems. The quasi-convex hull of the quadratic equalities in the AC power bus injection model (BIM) and the exact convex hull of the quadratic equality in the AC power branch flow model (BFM) are proposed respectively in this thesis. Based on the convex hull of BFM, a novel convex relaxation of the DES optimizations is proposed. The proposed approaches are tested on a real world feeder in Arizona and several benchmark IEEE radial feeders.
Date Created
2016
Agent

Enhanced power system operational performance with anticipatory control under increased penetration of wind energy

154870-Thumbnail Image.png
Description
As the world embraces a sustainable energy future, alternative energy resources, such as wind power, are increasingly being seen as an integral part of the future electric energy grid. Ultimately, integrating such a dynamic and variable mix of generation requires

As the world embraces a sustainable energy future, alternative energy resources, such as wind power, are increasingly being seen as an integral part of the future electric energy grid. Ultimately, integrating such a dynamic and variable mix of generation requires a better understanding of renewable generation output, in addition to power grid systems that improve power system operational performance in the presence of anticipated events such as wind power ramps. Because of the stochastic, uncontrollable nature of renewable resources, a thorough and accurate characterization of wind activity is necessary to maintain grid stability and reliability. Wind power ramps from an existing wind farm are studied to characterize persistence forecasting errors using extreme value analysis techniques. In addition, a novel metric that quantifies the amount of non-stationarity in time series wind power data was proposed and used in a real-time algorithm to provide a rigorous method that adaptively determines training data for forecasts. Lastly, large swings in generation or load can cause system frequency and tie-line flows to deviate from nominal, so an anticipatory MPC-based secondary control scheme was designed and integrated into an automatic generation control loop to improve the ability of an interconnection to respond to anticipated large events and fluctuations in the power system.
Date Created
2016
Agent