Energy Management System in Naval Submarines

158100-Thumbnail Image.png
Description
An optimal energy scheduling procedure is essential in an isolated environment such as naval submarines. Conventional naval submarines include diesel-electric propulsion systems, which utilize diesel generators along with batteries and fuel cells. Submarines can charge the batteries by running diesel-electric

An optimal energy scheduling procedure is essential in an isolated environment such as naval submarines. Conventional naval submarines include diesel-electric propulsion systems, which utilize diesel generators along with batteries and fuel cells. Submarines can charge the batteries by running diesel-electric generators only at the surface or at snorkeling depth. This is the most dangerous time for submarines to be detectable by acoustic and non-acoustic sensors of enemy assets. Optimizing the energy resources while reducing the need for snorkeling is the main factor to enhance underwater endurance. This thesis introduces an energy management system (EMS) as a supervisory tool for the officers onboard to plan energy schedules in order to complete various missions. The EMS for a 4,000-ton class conventional submarine is developed to minimize snorkeling and satisfy various conditions of practically designed missions by optimizing the energy resources, such as Lithium-ion batteries, Proton-exchange membrane fuel cells, and diesel-electric generators. Eventually, the optimized energy schedules with the minimum snorkeling hours are produced for five mission scenarios. More importantly, this EMS performs deterministic and stochastic operational scheduling processes to provide secured optimal schedules which contains outages in the power generation and storage systems.
Date Created
2020
Agent

An Examination of Transmission System Flexibility Metrics

157883-Thumbnail Image.png
Description
In recent years, with the increasing penetration of solar generation, the uncertainty and variability of the power system generation also have increased. Power systems always require a balance between generation and load. The generation of the conventional generators must be

In recent years, with the increasing penetration of solar generation, the uncertainty and variability of the power system generation also have increased. Power systems always require a balance between generation and load. The generation of the conventional generators must be scheduled to meet the total net load of the system with the variability and uncertainty of the solar resources integrated. The ability to match generation to load requires certain flexibility of the conventional generation units as well as a flexible transmission network to deliver the power. In this work, given the generation flexibility primarily reflected in the ramping rates, as well as the minimum and maximum output of the generation units, the transmission network flexibility is assessed using the metric developed in this work.

The main topic of this thesis is the examination of the transmission system flexibility using time series power flows (TSPFs). First, a TSPFs program is developed considering the economic dispatch of all the generating stations, as well as the available ramping rate of each generating unit. The time series power flow spans a period of 24 hours with 5-minute time interval and hence includes 288 power flow snapshots. Every power flow snapshot is created based on the power system topology and the previous system state. These power flow snapshots are referred to as the base case power flow below.

Sensitivity analysis is then conducted by using the TSPFs program as a primary tool, by fixing all but one of the system changes which include: solar penetration, wires to wires interconnection, expected retirements of coal units and expected participation in the energy

imbalance market. The impact of each individual change can be evaluated by the metric developed in the following chapters.
Date Created
2019
Agent

Analytical approaches for identification and representation of critical protection systems in transient stability studies

155471-Thumbnail Image.png
Description
After a major disturbance, the power system response is highly dependent on protection schemes and system dynamics. Improving power systems situational awareness requires proper and simultaneous modeling of both protection schemes and dynamic characteristics in power systems analysis tools. Historical

After a major disturbance, the power system response is highly dependent on protection schemes and system dynamics. Improving power systems situational awareness requires proper and simultaneous modeling of both protection schemes and dynamic characteristics in power systems analysis tools. Historical information and ex-post analysis of blackouts reaffirm the critical role of protective devices in cascading events, thereby confirming the necessity to represent protective functions in transient stability studies. This dissertation is aimed at studying the importance of representing protective relays in power system dynamic studies. Although modeling all of the protective relays within transient stability studies may result in a better estimation of system behavior, representing, updating, and maintaining the protection system data becomes an insurmountable task. Inappropriate or outdated representation of the relays may result in incorrect assessment of the system behavior. This dissertation presents a systematic method to determine essential relays to be modeled in transient stability studies. The desired approach should identify protective relays that are critical for various operating conditions and contingencies. The results of the transient stability studies confirm that modeling only the identified critical protective relays is sufficient to capture system behavior for various operating conditions and precludes the need to model all of the protective relays. Moreover, this dissertation proposes a method that can be implemented to determine the appropriate location of out-of-step blocking relays. During unstable power swings, a generator or group of generators may accelerate or decelerate leading to voltage depression at the electrical center along with generator tripping. This voltage depression may cause protective relay mis-operation and unintentional separation of the system. In order to avoid unintentional islanding, the potentially mis-operating relays should be blocked from tripping with the use of out-of-step blocking schemes. Blocking these mis-operating relays, combined with an appropriate islanding scheme, help avoid a system wide collapse. The proposed method is tested on data from the Western Electricity Coordinating Council. A triple line outage of the California-Oregon Intertie is studied. The results show that the proposed method is able to successfully identify proper locations of out-of-step blocking scheme.
Date Created
2017
Agent