Polar Cyclone Identification From 4D Climate Data in a Knowledge-Driven Visualization System

128671-Thumbnail Image.png
Description

Arctic cyclone activity has a significant association with Arctic warming and Arctic ice decline. Cyclones in the North Pole are more complex and less developed than those in tropical regions. Identifying polar cyclones proves to be a task of greater

Arctic cyclone activity has a significant association with Arctic warming and Arctic ice decline. Cyclones in the North Pole are more complex and less developed than those in tropical regions. Identifying polar cyclones proves to be a task of greater complexity. To tackle this challenge, a new method which utilizes pressure level data and velocity field is proposed to improve the identification accuracy. In addition, the dynamic, simulative cyclone visualized with a 4D (four-dimensional) wind field further validated the identification result. A knowledge-driven system is eventually constructed for visualizing and analyzing an atmospheric phenomenon (cyclone) in the North Pole. The cyclone is simulated with WebGL on in a web environment using particle tracing. To achieve interactive frame rates, the graphics processing unit (GPU) is used to accelerate the process of particle advection. It is concluded with the experimental results that: (1) the cyclone identification accuracy of the proposed method is 95.6% when compared with the NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis data; (2) the integrated knowledge-driven visualization system allows for streaming and rendering of millions of particles with an interactive frame rate to support knowledge discovery in the complex climate system of the Arctic region.

Date Created
2016-09-05
Agent

An Integrated Software Framework to Support Semantic Modeling and Reasoning of Spatiotemporal Change of Geographical Objects: A Use Case of Land Use and Land Cover Change Study

128690-Thumbnail Image.png
Description

Evolving Earth observation and change detection techniques enable the automatic identification of Land Use and Land Cover Change (LULCC) over a large extent from massive amounts of remote sensing data. It at the same time poses a major challenge in

Evolving Earth observation and change detection techniques enable the automatic identification of Land Use and Land Cover Change (LULCC) over a large extent from massive amounts of remote sensing data. It at the same time poses a major challenge in effective organization, representation and modeling of such information. This study proposes and implements an integrated computational framework to support the modeling, semantic and spatial reasoning of change information with regard to space, time and topology. We first proposed a conceptual model to formally represent the spatiotemporal variation of change data, which is essential knowledge to support various environmental and social studies, such as deforestation and urbanization studies. Then, a spatial ontology was created to encode these semantic spatiotemporal data in a machine-understandable format. Based on the knowledge defined in the ontology and related reasoning rules, a semantic platform was developed to support the semantic query and change trajectory reasoning of areas with LULCC. This semantic platform is innovative, as it integrates semantic and spatial reasoning into a coherent computational and operational software framework to support automated semantic analysis of time series data that can go beyond LULC datasets. In addition, this system scales well as the amount of data increases, validated by a number of experimental results. This work contributes significantly to both the geospatial Semantic Web and GIScience communities in terms of the establishment of the (web-based) semantic platform for collaborative question answering and decision-making.

Date Created
2016-09-30
Agent

A Geospatial Cyberinfrastructure for Urban Economic Analysis and Spatial Decision-Making

130331-Thumbnail Image.png
Description
Urban economic modeling and effective spatial planning are critical tools towards achieving urban sustainability. However, in practice, many technical obstacles, such as information islands, poor documentation of data and lack of software platforms to facilitate virtual collaboration, are challenging the

Urban economic modeling and effective spatial planning are critical tools towards achieving urban sustainability. However, in practice, many technical obstacles, such as information islands, poor documentation of data and lack of software platforms to facilitate virtual collaboration, are challenging the effectiveness of decision-making processes. In this paper, we report on our efforts to design and develop a geospatial cyberinfrastructure (GCI) for urban economic analysis and simulation. This GCI provides an operational graphic user interface, built upon a service-oriented architecture to allow (1) widespread sharing and seamless integration of distributed geospatial data; (2) an effective way to address the uncertainty and positional errors encountered in fusing data from diverse sources; (3) the decomposition of complex planning questions into atomic spatial analysis tasks and the generation of a web service chain to tackle such complex problems; and (4) capturing and representing provenance of geospatial data to trace its flow in the modeling task. The Greater Los Angeles Region serves as the test bed. We expect this work to contribute to effective spatial policy analysis and decision-making through the adoption of advanced GCI and to broaden the application coverage of GCI to include urban economic simulations.
Date Created
2013-05-21
Agent

Regional economic inequality analysis : a comparative study of the United States and China

154968-Thumbnail Image.png
Description
Economic inequality is always presented as how economic metrics vary amongst individuals in a group, amongst groups in a population, or amongst some regions. Economic inequality can substantially impact the social environment, socioeconomics as well as human living standard. Since

Economic inequality is always presented as how economic metrics vary amongst individuals in a group, amongst groups in a population, or amongst some regions. Economic inequality can substantially impact the social environment, socioeconomics as well as human living standard. Since economic inequality always plays an important role in our social environment, its study has attracted much attention from scholars in various research fields, such as development economics, sociology and political science. On the other hand, economic inequality can result from many factors, phenomena, and complex procedures, including policy, ethnic, education, globalization and etc. However, the spatial dimension in economic inequality research did not draw much attention from scholars until early 2000s. Spatial dependency, perform key roles in economic inequality analysis. The spatial econometric methods do not merely convey a consequence of the characters of the data exclusively. More importantly, they also respect and quantify the spatial effects in the economic inequality. As aforementioned, although regional economic inequality starts to attract scholars' attention in both economy and regional science domains, corresponding methodologies to examine such regional inequality remain in their preliminary phase, which need substantial further exploration. My thesis aims at contributing to the body of knowledge in the method development to support economic inequality studies by exploring the feasibility of a set of new analytical methods in use of regional inequality analysis. These methods include Theil's T statistic, geographical rank Markov and new methods applying graph theory. The thesis will also leverage these methods to compare the inequality between China and US, two large economic entities in the world, because of the long history of economic development as well as the corresponding evolution of inequality in US; the rapid economic development and consequent high variation of economic inequality in China.
Date Created
2016
Agent

A spatial statistical framework for evaluating landscape pattern and its impacts on the urban thermal environment

154788-Thumbnail Image.png
Description
Urban growth, from regional sprawl to global urbanization, is the most rapid, drastic, and irreversible form of human modification to the natural environment. Extensive land cover modifications during urban growth have altered the local energy balance, causing the city warmer

Urban growth, from regional sprawl to global urbanization, is the most rapid, drastic, and irreversible form of human modification to the natural environment. Extensive land cover modifications during urban growth have altered the local energy balance, causing the city warmer than its surrounding rural environment, a phenomenon known as an urban heat island (UHI). How are the seasonal and diurnal surface temperatures related to the land surface characteristics, and what land cover types and/or patterns are desirable for ameliorating climate in a fast growing desert city? This dissertation scrutinizes these questions and seeks to address them using a combination of satellite remote sensing, geographical information science, and spatial statistical modeling techniques.

This dissertation includes two main parts. The first part proposes to employ the continuous, pixel-based landscape gradient models in comparison to the discrete, patch-based mosaic models and evaluates model efficiency in two empirical contexts: urban landscape pattern mapping and land cover dynamics monitoring. The second part formalizes a novel statistical model called spatially filtered ridge regression (SFRR) that ensures accurate and stable statistical estimation despite the existence of multicollinearity and the inherent spatial effect.

Results highlight the strong potential of local indicators of spatial dependence in landscape pattern mapping across various geographical scales. This is based on evidence from a sequence of exploratory comparative analyses and a time series study of land cover dynamics over Phoenix, AZ. The newly proposed SFRR method is capable of producing reliable estimates when analyzing statistical relationships involving geographic data and highly correlated predictor variables. An empirical application of the SFRR over Phoenix suggests that urban cooling can be achieved not only by altering the land cover abundance, but also by optimizing the spatial arrangements of urban land cover features. Considering the limited water supply, rapid urban expansion, and the continuously warming climate, judicious design and planning of urban land cover features is of increasing importance for conserving resources and enhancing quality of life.
Date Created
2016
Agent

A taxonomy of parallel vector spatial analysis algorithms

154079-Thumbnail Image.png
Description
Nearly 25 years ago, parallel computing techniques were first applied to vector spatial analysis methods. This initial research was driven by the desire to reduce computing times in order to support scaling to larger problem sets. Since this initial work,

Nearly 25 years ago, parallel computing techniques were first applied to vector spatial analysis methods. This initial research was driven by the desire to reduce computing times in order to support scaling to larger problem sets. Since this initial work, rapid technological advancement has driven the availability of High Performance Computing (HPC) resources, in the form of multi-core desktop computers, distributed geographic information processing systems, e.g. computational grids, and single site HPC clusters. In step with increases in computational resources, significant advancement in the capabilities to capture and store large quantities of spatially enabled data have been realized. A key component to utilizing vast data quantities in HPC environments, scalable algorithms, have failed to keep pace. The National Science Foundation has identified the lack of scalable algorithms in codified frameworks as an essential research product. Fulfillment of this goal is challenging given the lack of a codified theoretical framework mapping atomic numeric operations from the spatial analysis stack to parallel programming paradigms, the diversity in vernacular utilized by research groups, the propensity for implementations to tightly couple to under- lying hardware, and the general difficulty in realizing scalable parallel algorithms. This dissertation develops a taxonomy of parallel vector spatial analysis algorithms with classification being defined by root mathematical operation and communication pattern, a computational dwarf. Six computational dwarfs are identified, three being drawn directly from an existing parallel computing taxonomy and three being created to capture characteristics unique to spatial analysis algorithms. The taxonomy provides a high-level classification decoupled from low-level implementation details such as hardware, communication protocols, implementation language, decomposition method, or file input and output. By taking a high-level approach implementation specifics are broadly proposed, breadth of coverage is achieved, and extensibility is ensured. The taxonomy is both informed and informed by five case studies im- plemented across multiple, divergent hardware environments. A major contribution of this dissertation is a theoretical framework to support the future development of concrete parallel vector spatial analysis frameworks through the identification of computational dwarfs and, by extension, successful implementation strategies.
Date Created
2015
Agent

Open Geospatial Analytics with PySAL

130375-Thumbnail Image.png
Description
This article reviews the range of delivery platforms that have been developed for the PySAL open source Python library for spatial analysis. This includes traditional desktop software (with a graphical user interface, command line or embedded in a computational notebook),

This article reviews the range of delivery platforms that have been developed for the PySAL open source Python library for spatial analysis. This includes traditional desktop software (with a graphical user interface, command line or embedded in a computational notebook), open spatial analytics middleware, and web, cloud and distributed open geospatial analytics for decision support. A common thread throughout the discussion is the emphasis on openness, interoperability, and provenance management in a scientific workflow. The code base of the PySAL library provides the common computing framework underlying all delivery mechanisms.
Date Created
2015-06-01
Agent

How does built environment affect cycling?: evidence from the whole California 2010-2012

153442-Thumbnail Image.png
Description
It has been identified in the literature that there exists a link between the built environment and non-motorized transport. This study aims to contribute to existing literature on the effects of the built environment on cycling, examining the case of

It has been identified in the literature that there exists a link between the built environment and non-motorized transport. This study aims to contribute to existing literature on the effects of the built environment on cycling, examining the case of the whole State of California. Physical built environment features are classified into six groups as: 1) local density, 2) diversity of land use, 3) road connectivity, 4) bike route length, 5) green space, 6) job accessibility. Cycling trips in one week for all children, school children, adults and employed-adults are investigated separately. The regression analysis shows that cycling trips is significantly associated with some features of built environment when many socio-demographic factors are taken into account. Street intersections, bike route length tend to increase the use of bicycle. These effects are well-aligned with literature. Moreover, both local and regional job accessibility variables are statistically significant in two adults' models. However, residential density always has a significant negatively effect on cycling trips, which is still need further research to confirm. Also, there is a gap in literature on how green space affects cycling, but the results of this study is still too unclear to make it up. By elasticity analysis, this study concludes that street intersections is the most powerful predictor on cycling trips. From another perspective, the effects of built environment on cycling at workplace (or school) are distinguished from at home. This study implies that a wide range of measures are available for planners to control vehicle travel by improving cycling-level in California.
Date Created
2015
Agent

An Efficient Measure of Compactness for Two-Dimensional Shapes and Its Application in Regionalization Problems

129674-Thumbnail Image.png
Description

A measure of shape compactness is a numerical quantity representing the degree to which a shape is compact. Ways to provide an accurate measure have been given great attention due to its application in a broad range of GIS problems,

A measure of shape compactness is a numerical quantity representing the degree to which a shape is compact. Ways to provide an accurate measure have been given great attention due to its application in a broad range of GIS problems, such as detecting clustering patterns from remote-sensing images, understanding urban sprawl, and redrawing electoral districts to avoid gerrymandering. In this article, we propose an effective and efficient approach to computing shape compactness based on the moment of inertia (MI), a well-known concept in physics. The mathematical framework and the computer implementation for both raster and vector models are discussed in detail. In addition to computing compactness for a single shape, we propose a computational method that is capable of calculating the variations in compactness as a shape grows or shrinks, which is a typical application found in regionalization problems. We conducted a number of experiments that demonstrate the superiority of the MI over the popular isoperimetric quotient approach in terms of (1) computational efficiency; (2) tolerance of positional uncertainty and irregular boundaries; (3) ability to handle shapes with holes and multiple parts; and (4) applicability and efficacy in districting/zonation/regionalization problems.

Date Created
2013-08-15
Agent