Does the Spatial Arrangement of Urban Landscape Matter? Examples of Urban Warming and Cooling in Phoenix and Las Vegas

141432-Thumbnail Image.png
Description

This study examines the impact of spatial landscape configuration (e.g., clustered, dispersed) on land-surface temperatures (LST) over Phoenix, Arizona, and Las Vegas, Nevada, USA. We classified detailed land-cover types via object-based image analysis (OBIA) using Geoeye-1 at 3-m resolution (Las

This study examines the impact of spatial landscape configuration (e.g., clustered, dispersed) on land-surface temperatures (LST) over Phoenix, Arizona, and Las Vegas, Nevada, USA. We classified detailed land-cover types via object-based image analysis (OBIA) using Geoeye-1 at 3-m resolution (Las Vegas) and QuickBird at 2.4-m resolution (Phoenix). Spatial autocorrelation (local Moran’s I ) was then used to test for spatial dependence and to determine how clustered or dispersed points were arranged. Next, we used Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired over Phoenix (daytime on 10 June and nighttime on 17 October 2011) and Las Vegas (daytime on 6 July and nighttime on 27 August 2005) to examine day- and nighttime LST with regard to the spatial arrangement of anthropogenic and vegetation features. Local Moran’s I values of each land-cover type were spatially correlated to surface temperature. The spatial configuration of grass and trees shows strong negative correlations with LST, implying that clustered vegetation lowers surface temperatures more effectively. In contrast, clustered spatial arrangements of anthropogenic land-cover types, especially impervious surfaces and open soil, elevate LST. These findings suggest that city planners and managers should, where possible, incorporate clustered grass and trees to disperse unmanaged soil and paved surfaces, and fill open unmanaged soil with vegetation. Our findings are in line with national efforts to augment and strengthen green infrastructure, complete streets, parking management, and transit-oriented development practices, and reduce sprawling, unwalkable housing development.

Date Created
2015-06-29
Agent

Understanding the Impact of Urbanization on Surface Urban Heat Islands: A Longitudinal Analysis of the Oasis Effect in Subtropical Desert Cities

128161-Thumbnail Image.png
Description

We quantified the spatio-temporal patterns of land cover/land use (LCLU) change to document and evaluate the daytime surface urban heat island (SUHI) for five hot subtropical desert cities (Beer Sheva, Israel; Hotan, China; Jodhpur, India; Kharga, Egypt; and Las Vegas,

We quantified the spatio-temporal patterns of land cover/land use (LCLU) change to document and evaluate the daytime surface urban heat island (SUHI) for five hot subtropical desert cities (Beer Sheva, Israel; Hotan, China; Jodhpur, India; Kharga, Egypt; and Las Vegas, NV, USA). Sequential Landsat images were acquired and classified into the USGS 24-category Land Use Categories using object-based image analysis with an overall accuracy of 80% to 95.5%. We estimated the land surface temperature (LST) of all available Landsat data from June to August for years 1990, 2000, and 2010 and computed the urban-rural difference in the average LST and Normalized Difference Vegetation Index (NDVI) for each city. Leveraging non-parametric statistical analysis, we also investigated the impacts of city size and population on the urban-rural difference in the summer daytime LST and NDVI. Urban expansion is observed for all five cities, but the urbanization pattern varies widely from city to city. A negative SUHI effect or an oasis effect exists for all the cities across all three years, and the amplitude of the oasis effect tends to increase as the urban-rural NDVI difference increases. A strong oasis effect is observed for Hotan and Kharga with evidently larger NDVI difference than the other cities. Larger cities tend to have a weaker cooling effect while a negative association is identified between NDVI difference and population. Understanding the daytime oasis effect of desert cities is vital for sustainable urban planning and the design of adaptive management, providing valuable guidelines to foster smart desert cities in an era of climate variability, uncertainty, and change.

Date Created
2017-06-30
Agent

Rooftop Surface Temperature Analysis in an Urban Residential Environment

128663-Thumbnail Image.png
Description

The urban heat island (UHI) phenomenon is a significant worldwide problem caused by rapid population growth and associated urbanization. The UHI effect exacerbates heat waves during the summer, increases energy and water consumption, and causes the high risk of heat-related

The urban heat island (UHI) phenomenon is a significant worldwide problem caused by rapid population growth and associated urbanization. The UHI effect exacerbates heat waves during the summer, increases energy and water consumption, and causes the high risk of heat-related morbidity and mortality. UHI mitigation efforts have increasingly relied on wisely designing the urban residential environment such as using high albedo rooftops, green rooftops, and planting trees and shrubs to provide canopy coverage and shading. Thus, strategically designed residential rooftops and their surrounding landscaping have the potential to translate into significant energy, long-term cost savings, and health benefits. Rooftop albedo, material, color, area, slope, height, aspect and nearby landscaping are factors that potentially contribute. To extract, derive, and analyze these rooftop parameters and outdoor landscaping information, high resolution optical satellite imagery, LIDAR (light detection and ranging) point clouds and thermal imagery are necessary. Using data from the City of Tempe AZ (a 2010 population of 160,000 people), we extracted residential rooftop footprints and rooftop configuration parameters from airborne LIDAR point clouds and QuickBird satellite imagery (2.4 m spatial resolution imagery). Those parameters were analyzed against surface temperature data from the MODIS/ASTER airborne simulator (MASTER). MASTER images provided fine resolution (7 m) surface temperature data for residential areas during daytime and night time. Utilizing these data, ordinary least squares (OLS) regression was used to evaluate the relationships between residential building rooftops and their surface temperature in urban environment. The results showed that daytime rooftop temperature was closely related to rooftop spectral attributes, aspect, slope, and surrounding trees. Night time temperature was only influenced by rooftop spectral attributes and slope.

Date Created
2015-09-18
Agent

Size Matters: What Are the Characteristic Source Areas for Urban Planning Strategies?

128770-Thumbnail Image.png
Description

Urban environmental measurements and observational statistics should reflect the properties generated over an adjacent area of adequate length where homogeneity is usually assumed. The determination of this characteristic source area that gives sufficient representation of the horizontal coverage of a

Urban environmental measurements and observational statistics should reflect the properties generated over an adjacent area of adequate length where homogeneity is usually assumed. The determination of this characteristic source area that gives sufficient representation of the horizontal coverage of a sensing instrument or the fetch of transported quantities is of critical importance to guide the design and implementation of urban landscape planning strategies. In this study, we aim to unify two different methods for estimating source areas, viz. the statistical correlation method commonly used by geographers for landscape fragmentation and the mechanistic footprint model by meteorologists for atmospheric measurements. Good agreement was found in the intercomparison of the estimate of source areas by the two methods, based on 2-m air temperature measurement collected using a network of weather stations. The results can be extended to shed new lights on urban planning strategies, such as the use of urban vegetation for heat mitigation. In general, a sizable patch of landscape is required in order to play an effective role in regulating the local environment, proportional to the height at which stakeholders’ interest is mainly concerned.

Date Created
2016-11-10
Agent

A spatial statistical framework for evaluating landscape pattern and its impacts on the urban thermal environment

154788-Thumbnail Image.png
Description
Urban growth, from regional sprawl to global urbanization, is the most rapid, drastic, and irreversible form of human modification to the natural environment. Extensive land cover modifications during urban growth have altered the local energy balance, causing the city warmer

Urban growth, from regional sprawl to global urbanization, is the most rapid, drastic, and irreversible form of human modification to the natural environment. Extensive land cover modifications during urban growth have altered the local energy balance, causing the city warmer than its surrounding rural environment, a phenomenon known as an urban heat island (UHI). How are the seasonal and diurnal surface temperatures related to the land surface characteristics, and what land cover types and/or patterns are desirable for ameliorating climate in a fast growing desert city? This dissertation scrutinizes these questions and seeks to address them using a combination of satellite remote sensing, geographical information science, and spatial statistical modeling techniques.

This dissertation includes two main parts. The first part proposes to employ the continuous, pixel-based landscape gradient models in comparison to the discrete, patch-based mosaic models and evaluates model efficiency in two empirical contexts: urban landscape pattern mapping and land cover dynamics monitoring. The second part formalizes a novel statistical model called spatially filtered ridge regression (SFRR) that ensures accurate and stable statistical estimation despite the existence of multicollinearity and the inherent spatial effect.

Results highlight the strong potential of local indicators of spatial dependence in landscape pattern mapping across various geographical scales. This is based on evidence from a sequence of exploratory comparative analyses and a time series study of land cover dynamics over Phoenix, AZ. The newly proposed SFRR method is capable of producing reliable estimates when analyzing statistical relationships involving geographic data and highly correlated predictor variables. An empirical application of the SFRR over Phoenix suggests that urban cooling can be achieved not only by altering the land cover abundance, but also by optimizing the spatial arrangements of urban land cover features. Considering the limited water supply, rapid urban expansion, and the continuously warming climate, judicious design and planning of urban land cover features is of increasing importance for conserving resources and enhancing quality of life.
Date Created
2016
Agent