Web-Scale Multidimensional Visualization of Big Spatial Data to Support Earth Sciences - A Case Study With Visualizing Climate Simulation Data

128151-Thumbnail Image.png
Description

The world is undergoing rapid changes in its climate, environment, and ecosystems due to increasing population growth, urbanization, and industrialization. Numerical simulation is becoming an important vehicle to enhance the understanding of these changes and their impacts, with regional and

The world is undergoing rapid changes in its climate, environment, and ecosystems due to increasing population growth, urbanization, and industrialization. Numerical simulation is becoming an important vehicle to enhance the understanding of these changes and their impacts, with regional and global simulation models producing vast amounts of data. Comprehending these multidimensional data and fostering collaborative scientific discovery requires the development of new visualization techniques. In this paper, we present a cyberinfrastructure solution - PolarGlobe - that enables comprehensive analysis and collaboration. PolarGlobe is implemented upon an emerging web graphics library, WebGL, and an open source virtual globe system Cesium, which has the ability to map spatial data onto a virtual Earth. We have also integrated volume rendering techniques, value and spatial filters, and vertical profile visualization to improve rendered images and support a comprehensive exploration of multi-dimensional spatial data. In this study, the climate simulation dataset produced by the extended polar version of the well-known Weather Research and Forecasting Model (WRF) is used to test the proposed techniques. PolarGlobe is also easily extendable to enable data visualization for other Earth Science domains, such as oceanography, weather, or geology.

Date Created
2017-06-26
Agent

Polar Cyclone Identification From 4D Climate Data in a Knowledge-Driven Visualization System

128671-Thumbnail Image.png
Description

Arctic cyclone activity has a significant association with Arctic warming and Arctic ice decline. Cyclones in the North Pole are more complex and less developed than those in tropical regions. Identifying polar cyclones proves to be a task of greater

Arctic cyclone activity has a significant association with Arctic warming and Arctic ice decline. Cyclones in the North Pole are more complex and less developed than those in tropical regions. Identifying polar cyclones proves to be a task of greater complexity. To tackle this challenge, a new method which utilizes pressure level data and velocity field is proposed to improve the identification accuracy. In addition, the dynamic, simulative cyclone visualized with a 4D (four-dimensional) wind field further validated the identification result. A knowledge-driven system is eventually constructed for visualizing and analyzing an atmospheric phenomenon (cyclone) in the North Pole. The cyclone is simulated with WebGL on in a web environment using particle tracing. To achieve interactive frame rates, the graphics processing unit (GPU) is used to accelerate the process of particle advection. It is concluded with the experimental results that: (1) the cyclone identification accuracy of the proposed method is 95.6% when compared with the NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis data; (2) the integrated knowledge-driven visualization system allows for streaming and rendering of millions of particles with an interactive frame rate to support knowledge discovery in the complex climate system of the Arctic region.

Date Created
2016-09-05
Agent

Regional economic inequality analysis : a comparative study of the United States and China

154968-Thumbnail Image.png
Description
Economic inequality is always presented as how economic metrics vary amongst individuals in a group, amongst groups in a population, or amongst some regions. Economic inequality can substantially impact the social environment, socioeconomics as well as human living standard. Since

Economic inequality is always presented as how economic metrics vary amongst individuals in a group, amongst groups in a population, or amongst some regions. Economic inequality can substantially impact the social environment, socioeconomics as well as human living standard. Since economic inequality always plays an important role in our social environment, its study has attracted much attention from scholars in various research fields, such as development economics, sociology and political science. On the other hand, economic inequality can result from many factors, phenomena, and complex procedures, including policy, ethnic, education, globalization and etc. However, the spatial dimension in economic inequality research did not draw much attention from scholars until early 2000s. Spatial dependency, perform key roles in economic inequality analysis. The spatial econometric methods do not merely convey a consequence of the characters of the data exclusively. More importantly, they also respect and quantify the spatial effects in the economic inequality. As aforementioned, although regional economic inequality starts to attract scholars' attention in both economy and regional science domains, corresponding methodologies to examine such regional inequality remain in their preliminary phase, which need substantial further exploration. My thesis aims at contributing to the body of knowledge in the method development to support economic inequality studies by exploring the feasibility of a set of new analytical methods in use of regional inequality analysis. These methods include Theil's T statistic, geographical rank Markov and new methods applying graph theory. The thesis will also leverage these methods to compare the inequality between China and US, two large economic entities in the world, because of the long history of economic development as well as the corresponding evolution of inequality in US; the rapid economic development and consequent high variation of economic inequality in China.
Date Created
2016
Agent