Phage Therapy: Saguaro Cactus Soft Rot Treatment

131078-Thumbnail Image.png
Description
Phage therapy has been around for more than a century, but has regained interest in the field of medicine and holds significant potential to act as a treatment against a deadly bacterial infection in various cactus species. It was discovered

Phage therapy has been around for more than a century, but has regained interest in the field of medicine and holds significant potential to act as a treatment against a deadly bacterial infection in various cactus species. It was discovered that bacteriophages isolated from soil samples of potato plants were able to suppress Pectobacterium carotovorum, ‘Pectobacterium’ being within the family Pectobacteriaceae which contains the ‘Erwinia’ genus that causes soft rot diseases in various plants (Jones, 2012). The two scientists had co-inoculated “... the phage with the phytobacterium” (Jones, 2012) in order to suppress the growth and prevent the infection from occurring.
Date Created
2020-05
Agent

Surveilling United States Sewage Sludge for Genetic Evidence of Genomoviridae & Microviridae Populations

131157-Thumbnail Image.png
Description
Following the journey through the sewerage system, wastewater is subject to a series of purification procedures, prior to water reuse and disposal of the resultant sewage sludge. Biosolids, also known as treated sewage sludge, deemed fit for application on

Following the journey through the sewerage system, wastewater is subject to a series of purification procedures, prior to water reuse and disposal of the resultant sewage sludge. Biosolids, also known as treated sewage sludge, deemed fit for application on land, is a nutrient-rich, semisolid byproduct of biological wastewater treatment. Technological progression in metagenomics has allowed for large-scale analysis of complex viral communities in a number of samples, including wastewater. Members of the Microviridae family are non-enveloped, ssDNA bacteriophages, and are known to infect enterobacteria. Members of the Genomoviridae family similarly are non-enveloped, ssDNA viruses, but are presumed to infect fungi rather than eubacteria. As these two families of viruses are not relatively documented and their diversity poorly classified, this study aimed to analyze the presence of genomoviruses and the diversity of microviruses in nine samples representative of wastewater in Arizona and other regions of the United States. Using a metagenomic approach, the nucleic acids of genomoviruses and microviruses were isolated, assembled into complete genomes, and characterized through visual analysis: a heat chart showing percent coverage for genomoviruses and a circular phylogenetic tree showing diversity of microviruses. The heat map results for the genomoviruses showed a large presence of 99 novel sequences in all nine wastewater samples. Additionally, the 535 novel microviruses displayed great diversity in the cladogram, both in terms of sub-family and isolation source. Further research should be conducted in order to classify the taxonomy of microviruses and the diversity of genomoviruses. Finally, this study suggests future exploration of the viral host, prior to entering the wastewater system.
Date Created
2020-05
Agent

Towards understanding ssDNA viral dynamics in Marmota flaviventris (yellow-bellied marmots)

131689-Thumbnail Image.png
Description
Yellow-bellied marmots (Marmota flavivent) are semi-fossorial ground-dwelling sciurid rodents native to the western United States. They are facultatively social and live in colonies that may contain over 50 individuals. Marmot populations are well studied in terms of their diet, life

Yellow-bellied marmots (Marmota flavivent) are semi-fossorial ground-dwelling sciurid rodents native to the western United States. They are facultatively social and live in colonies that may contain over 50 individuals. Marmot populations are well studied in terms of their diet, life cycle, distribution, and behavior, however, knowledge about viruses associated with marmots is very limited. In this study we aim to identify DNA viruses by non-invasive sampling of their feces. Viral DNA was extracted from fecal material of 35 individual marmots collected in Colorado and subsequently submitted to rolling circle amplification for circular molecule enrichment. Using a viral metagenomics approach which included high-throughput sequencing and verification of viral genomes using PCR, cloning and sequencing, a diverse group of single-stranded (ss) DNA viruses were identified. Diverse ssDNA viruses were identified that belong to two established families, Genomoviridae (n=7) and Anelloviridae (n=1) and several others that belong to unclassified circular replication associated encoding single-stranded (CRESS) DNA virus groups (n=19). There were also circular DNA molecules extracted (n=4) that appear to encode one viral-like gene and are composed of <1545 nt. The viruses that belonged to the family Genomoviridae clustered with those in the Gemycircularvirus genus. The genomoviruses were extracted from 6 samples. These clustered with gemycircularvirus extracted from arachnids and feces. The anellovirus, extracted from one sample, identified here has a genome sequence that is most similar to those from other rodent species, lagomorphs, and mosquitos. The CRESS viruses identified here were extracted from 9 samples and are novel and cluster with others identified from avian species. This study gives a snapshot of viruses associated with marmots based on fecal sampling.
Date Created
2020-05
Agent

Facile fabrication of meso-to-macroscale single-molecule arrays for high-throughput digital assays

157664-Thumbnail Image.png
Description
One of the single-most insightful, and visionary talks of the 20th century, “There’s plenty of room at the bottom,” by Dr. Richard Feynman, represented a first foray into the micro- and nano-worlds of biology and chemistry with the intention of

One of the single-most insightful, and visionary talks of the 20th century, “There’s plenty of room at the bottom,” by Dr. Richard Feynman, represented a first foray into the micro- and nano-worlds of biology and chemistry with the intention of direct manipulation of their individual components. Even so, for decades there has existed a gulf between the bottom-up molecular worlds of biology and chemistry, and the top-down world of nanofabrication. Creating single molecule nanoarrays at the limit of diffraction could incentivize a paradigm shift for experimental assays. However, such arrays have been nearly impossible to fabricate since current nanofabrication tools lack the resolution required for precise single-molecule spatial manipulation. What if there existed a molecule which could act as a bridge between these top-down and bottom-up worlds?

At ~100-nm, a DNA origami macromolecule represents one such bridge, acting as a breadboard for the decoration of single molecules with 3-5 nm resolution. It relies on the programmed self-assembly of a long, scaffold strand into arbitrary 2D or 3D structures guided via approximately two hundred, short, staple strands. Once synthesized, this nanostructure falls in the spatial manipulation regime of a nanofabrication tool such as electron-beam lithography (EBL), facilitating its high efficiency immobilization in predetermined binding sites on an experimentally relevant substrate. This placement technology, however, is expensive and requires specialized training, thereby limiting accessibility.

The work described here introduces a method for bench-top, cleanroom/lithography-free, DNA origami placement in meso-to-macro-scale grids using tunable colloidal nanosphere masks, and organosilane-based surface chemistry modification. Bench-top DNA origami placement is the first demonstration of its kind which facilitates precision placement of single molecules with high efficiency in diffraction-limited sites at a cost of $1/chip. The comprehensive characterization of this technique, and its application as a robust platform for high-throughput biophysics and digital counting of biomarkers through enzyme-free amplification are elucidated here. Furthermore, this technique can serve as a template for the bottom-up fabrication of invaluable biophysical tools such as zero mode waveguides, making them significantly cheaper and more accessible to the scientific community. This platform has the potential to democratize high-throughput single molecule experiments in laboratories worldwide.
Date Created
2019
Agent

Discovery of Novel Viruses in Arachnids

157580-Thumbnail Image.png
Description
Arachnids belong to the phylum Arthropoda, the largest phylum in the animal kingdom. Ticks are blood-feeding arachnids that vector numerous pathogens of significant medical and veterinary importance, while scorpions have become a common concern in urban desert cities due to

Arachnids belong to the phylum Arthropoda, the largest phylum in the animal kingdom. Ticks are blood-feeding arachnids that vector numerous pathogens of significant medical and veterinary importance, while scorpions have become a common concern in urban desert cities due to the high level of toxicity in their venom. To date, viruses associated with arachnids have been under sampled and understudied. Here viral metagenomics was used to explore the diversity of viruses present in ticks and scorpions. American dog ticks (Dermacentor variabilis) and blacklegged ticks (Ixodes scapularis) were collected in Pennsylvania while one hairy scorpion (Hadrurus arizonensis) and four bark scorpions (Centruroides sculpturatus) were collected in Phoenix. Novel viral genomes described here belong to the families Polyomaviridae, Anelloviridae, Genomoviridae, and a newly proposed family, Arthropolviridae.

Polyomaviruses are non-enveloped viruses with a small, circular double-stranded DNA (dsDNA) genomes that have been identified in a variety of mammals, birds and fish and are known to cause various diseases. Arthropolviridae is a proposed family of circular, large tumor antigen encoding dsDNA viruses that have a unidirectional genome organization. Genomoviruses and anelloviruses are ssDNA viruses that have circular genomes ranging in size from 2–2.4 kb and 2.1–3.8 kb, respectively. Genomoviruses are ubiquitous in the environment, having been identified in a wide range of animal, plant and environmental samples, while anelloviruses have been associated with a plethora of animals.

Here, 16 novel viruses are reported that span four viral families. Eight novel polyomaviruses were recovered from bark scorpions, three arthropolviruses were recovered from dog ticks and one arthropolvirus from a hairy scorpion. Viruses belonging to the families Polyomaviridae and Arthropolviridae are highly divergent. This is the first more extensive study of these viruses in arachnids. Three genomoviruses were recovered from both dog and deer ticks and one anellovirus was recovered from deer ticks, which are the first records of these viruses being recovered from ticks. This work highlights the diversity of dsDNA and ssDNA viruses in the arachnid population and emphasizes the importance of performing viral surveys on these populations.
Date Created
2019
Agent

Toxin Level Analysis in Dogs Envenomated by Pit Vipers in Arizona

132558-Thumbnail Image.png
Description
To date, there have been few, if any, studies evaluating the venom toxin levels in dogs that have been naturally envenomated by pit vipers. Understanding venom toxin pharmacokinetics in a clinical setting is important for a variety of reasons, including

To date, there have been few, if any, studies evaluating the venom toxin levels in dogs that have been naturally envenomated by pit vipers. Understanding venom toxin pharmacokinetics in a clinical setting is important for a variety of reasons, including the potential to better elucidate treatment options, prognosis, and other factors associated with pit viper envenomation. In addition, dogs serve as a comparative species to humans for evaluating pit viper envenomations. This pilot study’s primary objective was to address the question of “What do we see?” in dogs presenting for rattlesnake envenomation. To answer this question, we obtained serum from envenomated dogs presenting at three veterinary clinics, then used enzyme-linked immunosorbent assay (ELISA) and western blot analysis to measure total venom and key toxins in sera. Phospholipase A2, a primary venom toxin, was identified in a few samples by the western blot, and contributed to the positive correlation between percent echinocytes in the blood and venom concentration. Medical data records were compared to venom concentrations measured using ELISA to determine whether there were any significant correlations. First, the hematological results were compared. Clotting times showed a strong positive correlation, clotting times and platelets showed a negative correlation, while echinocytes and platelets showed no correlation. When compared to venom concentration, clotting times showed a negative correlation, while age showed a positive correlation. Weight and platelets were also compared to venom concentration, but no significant correlations were found. The logistics of this study provided a real-world model where time elapsed between envenomation and hospital admission, thus giving a realistic look at what occurs in both animal and human medicine.
Date Created
2019-05
Agent

Human Papillomavirus specific immune responses as biomarkers for the early detection of cervical cancer

133045-Thumbnail Image.png
Description
Human papillomavirus (HPV) is the causative agent of cervical cancer. Persistent infection with high-risk HPV 16, 18 or 45 species is associated with the development and progression of cervical cancer. HPV genotyping and Pap smear tests are the regular methods

Human papillomavirus (HPV) is the causative agent of cervical cancer. Persistent infection with high-risk HPV 16, 18 or 45 species is associated with the development and progression of cervical cancer. HPV genotyping and Pap smear tests are the regular methods used to detect pre-invasive cervical lesions, but there is a need for developing a rapid biomarker to profile immunity to these viruses. The viral E7 oncogene is expressed in most HPV-associated cancers and anti-E7 antibodies can be detected in the blood of patients with cervical cancer. This research was focused on viral E7 oncogene expression to be used in development of low-cost point of care tests, enabling patients from low resource settings to detect the asymptotic stage of cervical cancer and be able to seek treatment early. In order to produce the E7 protein in vitro to measure antibody levels, GST tagged E7 genes from HPV 16, 18 and 45 species were inserted into the pDEST15 vector and expressed in E. coli BL21DE3 cells that were induced with 1mM of IPTG. The E7-GST fused expressed protein was then purified using glutathione beads and resolved on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Protein expression was 5.8 \u03bcg/ml for HPV 16E7 in 500 ml culture and for the 500 ml culture of HPV 18 E7 and 45 E7 were 10.5 \u03bcg/ml and 10.5 \u03bcg/ml for HPV 18E7 and 45E7 respectively. High yield values are showing high expression levels of GST-tagged E7 recombinant protein which can be used for serotyping a number of individuals. This shows that HPV E7 can be produced in large quantities that can potentially be used in point of care tests that can help identify women at risk of cervical cancer. In conclusion, the E7 protein produced in this study can potentially be used to induce humoral responses in patients\u2019 sera for understanding the immune response of cervical cancer.
Date Created
2018-12
Agent

Occurrence of a Novel Mastrevirus in Sugarcane Germplasm Collections in Florida, Guadeloupe and Réunion

128130-Thumbnail Image.png
Description

Background: In Africa and Asia, sugarcane is the host of at least seven different virus species in the genus Mastrevirus of the family Geminiviridae. However, with the exception of Sugarcane white streak virus in Barbados, no other sugarcane-infecting mastrevirus has been

Background: In Africa and Asia, sugarcane is the host of at least seven different virus species in the genus Mastrevirus of the family Geminiviridae. However, with the exception of Sugarcane white streak virus in Barbados, no other sugarcane-infecting mastrevirus has been reported in the New World. Conservation and exchange of sugarcane germplasm using stalk cuttings facilitates the spread of sugarcane-infecting viruses.

Methods: A virion-associated nucleic acids (VANA)-based metagenomics approach was used to detect mastrevirus sequences in 717 sugarcane samples from Florida (USA), Guadeloupe (French West Indies), and Réunion (Mascarene Islands). Contig assembly was performed using CAP3 and sequence searches using BLASTn and BLASTx. Mastrevirus full genomes were enriched from total DNA by rolling circle amplification, cloned and sequenced. Nucleotide and amino acid sequence identities were determined using SDT v1.2. Phylogenetic analyses were conducted using MEGA6 and PHYML3.

Results: We identified a new sugarcane-infecting mastrevirus in six plants sampled from germplasm collections in Florida and Guadeloupe. Full genome sequences were determined and analyzed for three virus isolates from Florida, and three from Guadeloupe. These six genomes share >88% genome-wide pairwise identity with one another and between 89 and 97% identity with a recently identified mastrevirus (KR150789) from a sugarcane plant sampled in China. Sequences similar to these were also identified in sugarcane plants in Réunion.

Conclusions: As these virus isolates share <64% genome-wide identity with all other known mastreviruses, we propose classifying them within a new mastrevirus species named Sugarcane striate virus. This is the first report of sugarcane striate virus (SCStV) in the Western Hemisphere, a virus that most likely originated in Asia. The distribution, vector, and impact of SCStV on sugarcane production remains to be determined.

Date Created
2017-07-28
Agent

Genome Sequence of a Podovirus (AAPEc6) Isolated From Wastewater in New Zealand That Infects Escherichia Coli O45: H10

128136-Thumbnail Image.png
Description

Bacteriophages are ideal candidates for pathogen biocontrol to mitigate outbreaks of prevalent foodborne pathogens, such as Escherichia coli. We identified a bacteriophage (AAPEc6) from wastewater that infects E. coli O45:H10. The AAPEc6 genome sequence shares 93% identity (with 92% coverage) to enterobacterial phage K1E (Sp6likevirus) in the Autographivirinae subfamily (Podoviridae).

Date Created
2017-08-03
Agent

Sequence-Based Taxonomic Framework for the Classification of Uncultured Single-Stranded DNA Viruses of the Family Genomoviridae

128339-Thumbnail Image.png
Description

With the advent of metagenomics approaches, a large diversity of known and unknown viruses has been identified in various types of environmental, plant, and animal samples. One such widespread virus group is the recently established family Genomoviridae which includes viruses

With the advent of metagenomics approaches, a large diversity of known and unknown viruses has been identified in various types of environmental, plant, and animal samples. One such widespread virus group is the recently established family Genomoviridae which includes viruses with small (∼2–2.4 kb), circular ssDNA genomes encoding rolling-circle replication initiation proteins (Rep) and unique capsid proteins. Here, we propose a sequence-based taxonomic framework for classification of 121 new virus genomes within this family. Genomoviruses display ∼47% sequence diversity, which is very similar to that within the well-established and extensively studied family Geminiviridae (46% diversity). Based on our analysis, we establish a 78% genome-wide pairwise identity as a species demarcation threshold. Furthermore, using a Rep sequence phylogeny-based analysis coupled with the current knowledge on the classification of geminiviruses, we establish nine genera within the Genomoviridae family. These are Gemycircularvirus (n = 73), Gemyduguivirus (n = 1), Gemygorvirus (n = 9), Gemykibivirus (n = 29), Gemykolovirus (n = 3), Gemykrogvirus (n = 3), Gemykroznavirus (n = 1), Gemytondvirus (n = 1), Gemyvongvirus (n = 1). The presented taxonomic framework offers rational classification of genomoviruses based on the sequence information alone and sets an example for future classification of other groups of uncultured viruses discovered using metagenomics approaches.

Date Created
2017-02-02
Agent