The applications utilizing nanoparticles have grown in both industrial and academic areas because of the very large surface area to volume ratios of these particles. One of the best ways to process and control these nanoparticles is fluidization. In this…
The applications utilizing nanoparticles have grown in both industrial and academic areas because of the very large surface area to volume ratios of these particles. One of the best ways to process and control these nanoparticles is fluidization. In this work, a new microjet and vibration assisted (MVA) fluidized bed system was developed in order to fluidize nanoparticles. The system was tested and the parameters optimized using two commercially available TiO2 nanoparticles: P25 and P90. The fluidization quality was assessed by determining the non-dimensional bed height as well as the non-dimensional pressure drop. The non-dimensional bed height for the nanosized TiO2 in the MVA system optimized at about 5 and 7 for P25 and P90 TiO2, respectively, at a resonance frequency of 50 Hz. The non-dimensional pressure drop was also determined and showed that the MVA system exhibited a lower minimum fluidization velocity for both of the TiO2 types as compared to fluidization that employed only vibration assistance. Additional experiments were performed with the MVA to characterize the synergistic effects of vibrational intensity and gas velocity on the TiO2 P25 and P90 fluidized bed heights. Mathematical relationships were developed to correlate vibrational intensity, gas velocity, and fluidized bed height in the MVA. The non-dimensional bed height in the MVA system is comparable to previously published P25 TiO2 fluidization work that employed an alcohol in order to minimize the electrostatic attractions within the bed. However, the MVA system achieved similar results without the addition of a chemical, thereby expanding the potential chemical reaction engineering and environmental remediation opportunities for fluidized nanoparticle systems.
In order to aid future scaling up of the MVA process, the agglomerate size distribution in the MVA system was predicted by utilizing a force balance model coupled with a two-fluid model (TFM) simulation. The particle agglomerate size that was predicted using the computer simulation was validated with experimental data and found to be in good agreement.
Lastly, in order to demonstrate the utility of the MVA system in an air revitalization application, the capture of CO2 was examined. CO2 breakthrough time and adsorption capacities were tested in the MVA system and compared to a vibrating fluidized bed (VFB) system. Experimental results showed that the improved fluidity in the MVA system enhanced CO2 adsorption capacity.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
TiO2 has been studied in the degradation of ethanol for indoor application. A dynamic flowing non-loop system was utilized. The reactor was a quartz tube filled with the TiO2 catalyst with glass wool on the ends. The analytical equipment used…
TiO2 has been studied in the degradation of ethanol for indoor application. A dynamic flowing non-loop system was utilized. The reactor was a quartz tube filled with the TiO2 catalyst with glass wool on the ends. The analytical equipment used were Vernier's ethanol and CO2 sensors with a two-point calibration performed on the ethanol sensor. The purpose of the calibration was to create a known standard to establish accurate readings. The experimental procedure followed the scheme of bypassing the reactor, flowing into the reactor without the UV lights on for a small period, turning the UV lights on for five minutes, and then going back to the bypass. A CFD simulation using ANSYS Fluent was done to determine the optimal inlet and outlet positions of the biochamber that housed the sensors. The objective of the simulation was to determine which inlet and outlet locations provided the best fluid flow for sensor contact and mixing. Sensitivity analysis of varying parameters were tested to determine the optimal settings in producing accurate results to fulfill the simulation goals. It was determined that a vertical position biochamber with an inlet centered on the top face and the outlet on the bottom of a side face was ideal. The main experimental results showed that ethanol of both low and high concentrations were completely or almost fully degraded into carbon-products. The results showed that there was CO2 consumption and it was most likely due to a combination of sensor inaccuracy and accumulation onto the catalyst surface. However, the sensor inaccuracy would not account for the entirely of the CO2 consumption and previous studies have shown that carbon-products do form on the catalyst surface. Therefore, it can be asserted that CO2 has accumulated on the catalyst and the inclusion of water may have caused catalyst deactivation. Having the light on the photoreactor the whole time rather than waiting to turn on the light has shown to decrease the period of degradation but has no effect on the amount of degradation. Research from Nimlos, Muggli, etc., have determined that intermediate products such as acetaldehyde, acetic acid, formaldehyde, and formic acid form during ethanol degradation and this can be assumed to have occurred in this research as well. These intermediate products were not analyzed for this study, but has been included in the go-forward for future works. For indoor applications, TiO2 catalyst have already been implemented into consumer and commercialized air purifiers, but there is tremendous potential for HVAC systems. There are concerns with HVAC application as discussed, but if implemented correctly, it can be a useful tool for indoor air purification.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
We use a theoretical framework based on the integral form of the conservation equations, along with a heuristic model of the viscous dissipation, to find a closed-form solution to the liquid atomization problem. The energy balance for the spray renders…
We use a theoretical framework based on the integral form of the conservation equations, along with a heuristic model of the viscous dissipation, to find a closed-form solution to the liquid atomization problem. The energy balance for the spray renders to a quadratic formula for the drop size as a function, primarily of the liquid velocity. The Sauter mean diameter found using the quadratic formula shows good agreements and physical trends, when compared with experimental observations. This approach is shown to be applicable toward specifying initial drop size in computational fluid dynamics of spray flows.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)